Skip to main content
Log in

Wave produced changes in underwater light and their relations to vision

  • Paper from a symposium Behavioral Tactics of Predator and Prey
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Maximal visual sensitivity of most vertebrates and invertebrates coincides with the dominant wave-induced flicker frequencies associated with underwater light. Waves also produce patterns off reflective objects that resemble many of the body markings found on fishes. The close relationship that exists between the physiological properties of spatial and temporal vision thus suggests an ancient adaptation to the wave-induced fluctuations and spatial patterns associated with underwater light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Ali, M.A. & H. Kobayashi. 1968. Electroretinogram - FFF in albino trout. Experientia 24: 454–455.

    Google Scholar 

  • Alpern, M. 1972. Eye movements. pp. 303–330. In: D. Jameson & L.M. Hurrich (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Autrum, H. 1950. Die Belichtungs-potentiale und das Sehen der Insecten. Z. Vergl. Physiol. 32; 176–227.

    Google Scholar 

  • Autrum, H. 1958. Electrophysiological analysis of the visual systems in insects. Exp. Cell. Res. Suppl. 5: 426–439.

    Google Scholar 

  • Barlow, H.B. 1963. Slippage of contact lenses and other artifacts in relation to fading and regeneration of supposedly stable retinal images. Quart. J. Exp. Psychol. 15: 36–51.

    Google Scholar 

  • Barlow, H.B. 1969. Stabilized retinal images. pp. 431–439. In: W. Reichardt (ed.) International School of Physics Enrico Fermi, Academic Press, New York.

    Google Scholar 

  • Burr, D.C. & J. Ross. 1982. Contrast sensitivities at high velocities. Vision Res. 22: 479–484.

    Google Scholar 

  • Burrows, M. & G.D. Horridge. 1968. The action of the eyecup muscles of the crab, Carcinus, during optokinetic movement. J. Exp. Biol. 49: 223–250.

    Google Scholar 

  • Campbell, F.W. & L. Maffei. 1974. Contrast and spatial frequency. Sci. Amer. 231: 106–114.

    Google Scholar 

  • Carpenter, R.H.S. 1977. Movements of the Eyes. Pion Ltd., London. 420 pp.

    Google Scholar 

  • Clark, E. 1981. Sharks magnificent and misunderstood. Nat. Geog. 160: 137–187.

    Google Scholar 

  • Crozier, W.J. & E. Wolf. 1939. The flicker response contour for the gecko (rod retina). J. Gen. Physiol. 22: 555–566.

    Google Scholar 

  • Crozier, W.J. & E. Wolf. 1941a. The flicker response contour for Phrynosoma (horned lizard; cone retina). J. Gen. Physiol. 24: 317–324.

    Google Scholar 

  • Crozier, W.J. & E. Wolf. 1941b. The simplex flicker threshold contour for the Zebra finch. J. Gen. Physiol 24: 625–633.

    Google Scholar 

  • DeLange, H. 1958. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Alternation characteristics with white and colored light. J. Opt. Soc. Amer. 48: 777–784.

    Google Scholar 

  • Denton, E.J. & J.A.C. Nicol. 1966. A survey of reflectivity in silvery teleosts. J. Mar. Biol. Assoc. (U.K.) 46: 685–722.

    Google Scholar 

  • Dera, J. & H.R. Gordon. 1968. Light field fluctuations in the photic zone. Limnol. & Oceanogr. 13: 697–699.

    Google Scholar 

  • DeVoe, R. 1966. A non-linear model of sensory adaptation in the eye of the wolf spider. pp. 309–328. In: C.G. Bernard (ed.) The Functional Organization of the Compound Eye, Pergamon Press, Oxford.

    Google Scholar 

  • Dodt, E. & A. Worth. 1953. Differentiation between rods and cones by flicker electroretinography in pigeon or guinea pig. Acta. Physiol. Scand. 30: 80–89.

    Google Scholar 

  • Duntley, S.Q. 1951. The visibility of submerged objects II. Proc. Armed Forces, Nat. Res. Coun. Vision Comm. 28: 60.

    Google Scholar 

  • Easter, S.S., Jr. 1971. Spontaneous eye movements in restrained goldfish. Vision Res. 11: 333–342.

    Google Scholar 

  • Fourtes, M.G.F. & A.L. Hodgkin. 1964. Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (London) 172: 239–263.

    Google Scholar 

  • Fuortes, M.G. & P.M. O'Bryan. 1972. Generator potentials in invertebrate photoreceptors. pp. 279–320. In: M.G. Fuortes (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Gordon, H.R., J.M. Smith & O.B. Brown. 1971. Spectra of underwater light-field fluctuations in the photic zone. Bull Mar. Sci. 21: 466–470.

    Google Scholar 

  • Gramoni, R. & M.A. Ali. 1970. L'Electroretinogramme et la frequence de fusion chez Amia calva (Linne). Rev. Can. Biol. 76: 37–58.

    Google Scholar 

  • Granit, R. 1963. Sensory Mechanisms of the Retina. Hafner Publishing Co., New York. 412 pp.

    Google Scholar 

  • Green, D.G. & I.M. Siegel. 1975. Double branched flicker fusion curves from the all-rod skate retina. Science 188: 1120–1122.

    Google Scholar 

  • Hamasaki, D.I. 1967. An anatomical and electrophysiological study of the retina of the owl monkey, Aotes trivirgatus. J. Comp. Neurol. 130: 163–174.

    Google Scholar 

  • Hamasaki, D.I. 1968. The electroretinogram of the intact anesthetized octopus. Vision Res. 8: 247–258.

    Google Scholar 

  • Hamasaki, D.I. & J. Peregrin. 1970. A blue-sensitive system in the lateral eye of the green iguana. Vision Res. 10: 121–127.

    Google Scholar 

  • Hobson, E.S. 1968. Predatory behavior of some shore fishes in the Gulf of California. Bur. Sport Fish. Wildl. Res. Rep. 73: 1–92.

    Google Scholar 

  • Hobson, E.S. 1979. Interactions between piscivorous fishes and their prey. pp. 231–242. In: H. Clepper (ed.) Predator-prey Systems in Fisheries Management, Sport Fishing Inst., Washington.

    Google Scholar 

  • Jahn, T. & V. Wolff. 1941. Influence of a visual diurnal rhythm on flicker response contours of Dytiscus. Proc. Soc. Exp. Biol. Med. 48: 660–665.

    Google Scholar 

  • Jenssen, T.A. & B. Swenson. 1974. An ecological correlate of critical flicker-fusion frequencies for some Anolis lizards. Vision Res. 10: 965–970.

    Google Scholar 

  • Jerlov, N.G. 1968. Optical Oceanography. Elsevier, London. 194 pp.

    Google Scholar 

  • Johns, P.R. & S.S. Easter, Jr. 1978. Growth of the adult goldfish eye. II. Increase in retinal cell number. J. Comp. Neurol. 176: 331–342.

    Google Scholar 

  • Kelly, D.H. 1959. Effects of sharp edges in a flickering field. J. Opt. Soc. Amer. 49: 730–732.

    Google Scholar 

  • Kelly, D.H. 1972a. Flicker. pp. 273–302. In: D. Jameson & L.M. Hurvich (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Kelly, D.H. 1972b. Adaptation effects on spatio-temporal sinewave thresholds. Vision Res. 12: 89–102.

    Google Scholar 

  • Kobayashi, H. 1962. A comparative study on electroretinogram in fish with special reference to ecological aspects. J. Shimonoseki Coll. Fish. 11: 17–148.

    Google Scholar 

  • Laughlin, S.B. 1980. Neural principles in the visual system. pp. 133–280. In: H. Autrum (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Loew, E.R. 1974. C02-induced changes in the critical fusion frequency of the fly, Sarcophaga bullata. J. Insect Physiol. 20: 1737–1748.

    Google Scholar 

  • Lythgoe, J.N. 1966. Visual pigments and underwater vision. pp. 375–391. In: R. Bainbridge, G.C. Evans & O. Rackham (ed.) Light as an Ecological Factor, Blackwell, Oxford.

    Google Scholar 

  • Lythgoe, J.N. 1979. The Ecology of Vision. Clarendon Press, Oxford. 244 pp Maffei, L. 1978.

    Google Scholar 

  • Maffei, L. 1978. Spatial frequency channels, neuronal mechanisms. pp. 39–66. In: R. Held, H. Leibowitz & H.L. Teuber (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • McFarland, W.N. & F.W. Munz. 1975a. Part II: The photic environment of clear tropical seas during the day. Vision Res. 15: 1063–1070.

    Google Scholar 

  • McFarland, W.N. & F.W. Munz. 1975b. Part III: The evolution of photopic visual pigments in fishes. Vision Res. 15: 1071–1080.

    Google Scholar 

  • McFarland, W.N., F.H. Pough, T.J. Cade & J.B. Heiser. 1979. Vertebrate Life. Macmillan, New York. 875 pp.

    Google Scholar 

  • Munz, F.W. & W.N. McFarland. 1977 Evolutionary adaptations of fishes to the photic environment. pp. 193–274. In: F. Crescitelli (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Northmore, D., F.C. Volkmann & D. Yager. 1978. Vision in fishes: color and pattern. pp. 79–136. In: D.I. Mostofsky (ed.) The Behavior of Fish and Other Aquatic animals, Academic Press, New York.

    Google Scholar 

  • Nye, P.W. 1969. The monocular eye movement of the pigeon. Vision Res. 9: 133–144.

    Google Scholar 

  • Protasov, V. R. 1968. Vision and Near Orientation of Fish. Israel Prog. for Sci. Translations, 1970, Transl. by M. Raveh. U.S. Dept of Commerce, Washington, D.C. 175 pp.

  • Ratliff, F., B.W. Knight, J. Toyoda & H.K. Hartline. 1967. Enhancement of flicker by lateral inhibition. Science 158: 392–393.

    Google Scholar 

  • Robson, J.G. 1966. Spatial and temporal contrast-sensitivity functions of the visual system. J. Opt. Soc. Am. 56: 1141–1142.

    Google Scholar 

  • Ruck, P. & T.L. Jahn. 1954. Electrical studies on the compound eye of Ligia occidentalis dana (Crustacea: Isopoda). J. Gen. Physiol. 37: 825–849.

    Google Scholar 

  • Schenck, H. 1957. On the focusing of sunlight by ocean waves. J. Op. Soc. Amer. 47: 653–657.

    Google Scholar 

  • Smith, E.L., III D.A. Witzel & D.G. Pitts. 1976. The waveform and scotopic CFF of the sheep electroretinogram. Vision Res. 16: 1241–1245.

    Google Scholar 

  • Snyder, R.L. & J. Dera. 1970. Wave-induced light-field fluctuations in the sea. J. Op. Soc. Amer. 60: 1072–1079.

    Google Scholar 

  • Svaetichin, G. 1956. Receptor mechanisms for flicker and fusion. Acta. Physiol. Scand. 39, Suppl. 134: 47–54.

    Google Scholar 

  • Tamura, T. & I. Hanyu. 1959. The flicker electroretinogram of the carp eye. Bull. Jap. Soc. Sci. Fish. 25: 624–631.

    Google Scholar 

  • van Dorn, W.G. 1974. Oceanography and Seamanship. Dodd, Mead & Co., New York. 481 pp.

    Google Scholar 

  • Walls, G.L. 1967. The Vertebrate Eye and Its Adaptive Radiation. Hafner, New York. 785 pp.

    Google Scholar 

  • Waterman, T.H. 1961. Light sensitivity and vision. pp. 1–64. In: T.H. Waterman (ed.) The Physiology of Crustacea, Academic Press, New York.

    Google Scholar 

  • Witzel, D.A. & E.L. Smith, III. 1976. Unpublished pilot data mentioned In: The waveform and scotopic CFF of the sheep electroretinogram, E.L. Smith III, D.A. Witzel & D.G. Pitts. 1976. Vision Res. 16: 1241–1245.

  • Yarbus, A.L. 1967. Eye Movements and Vision. Plenum Press, New York. 222 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFarland, W.N., Loew, E.R. Wave produced changes in underwater light and their relations to vision. Environ Biol Fish 8, 173–184 (1983). https://doi.org/10.1007/BF00001083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001083

Keywords

Navigation