Skip to main content

Nanoemulsions Challenges and Future Prospects as a Drug Delivery System

  • Chapter
  • First Online:
Current Trends in Green Nano-emulsions

Abstract

Nanoemulsion during the recent years proved that has the potential to overwhelm numerous difficulties in formulation of drugs. By loading drugs with poor water-solubility in the proper nanoemulsions improves their solubility and/or wettability. Therefore, this expands their pharmacodynamics as well as pharmacokinetics by diverse administration methods. Accompanying with the optimal size of nanodroplets, the droplets act as a drugs pool, facilitating nanoemulsion to do as a multifunctional platform to defect different diseases. A number of significant advantages, which include nanoemulsion qualities, such as well-organized drug release with suitable rate, extended efficacy, control of drug uptake, the ability of drug protection from oxidation and low side effects, have been described in last decades. The great characteristic of nanoemulsion contains also a diversity of engineering procedure options as well as a combination of extensively mixed components such as liquid lipids, surfactants or even drug-conjugates. These structures afford alternatives for designing advanced nanoemulsions pointing at high-value and different applications. This review presents the challenges and prospects of diverse nanoemulsion types and its application as drug delivery methods. Types of nanoemulsions as well as components of a nanoemulsions, their manufacturing via different methods like (High pressure homogenization, Ultrasonication, Microfluidization, Phase Inversion, Temperature Spontaneous Emulsification, Membrane Emulsification, Emulsion Inversion Point) is described. Different drug delivery applications (Oral, Parenteral, Transdermal, Topical, Intranasal and Ocular delivery) is presented. Kinetics of drug release as well as stability of nanoemulsions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(BCS):

Biopharmaceutics Classification System

(BBB):

Blood Brain Barrier

(CNS):

Central Nervous System

(DLVO):

Derjaguin, Landau, Verwey, And Overbeek

(DOPE):

Di-Oleoyl Phosphatidylethanolamine

(DSPC):

Di-Stearoyl Phosphatidylcholine

(EIP):

Emulsion Inversion Point

(FDA):

Food and Drug Administration

(GIT):

Gastrointestinal Tract

(GRAS):

Generally Recognized as Safe

(HPH):

High-Pressure Homogenization

(HLB):

Hydrophilic-Lipophilic Balance

(IV):

Intravenous

(IPM):

Isopropyl Myristate

(LC):

Liquid Chromatography

(MQ):

Methyl Quercetin

(O/W):

Oil-In-Water

(O/W/O):

Oil-In-Water-In-Oil

(PIT):

Phase Inversion Temperature

(PEG):

Polyethylene Glycol

(POE):

Polyoxyethylene

(Ph):

Potential of Hydrogen

(W/O):

Water-In-Oil

(W/O/W):

Water-In-Oil-In-Water

References

  1. Alexander A, Khichariya A, Gupta S, Patel RJ, Giri TK, Tripathi DK (2013) Recent expansions in an emergent novel drug delivery technology: emulgel. J Control Release 171:122–132

    Article  PubMed  Google Scholar 

  2. Ammar HO, Salama HA, Ghorab M, Mahmoud AA (2009) Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 10:808–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377:142–147

    Article  CAS  PubMed  Google Scholar 

  4. Aoki T, Decker EA, Julian McClements D (2005) Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocoll 19:209–220

    Google Scholar 

  5. Araújo FA, Kelmann RG, Araújo BV, Finatto RB, Teixeira HF, Koester LS (2011) Development and characterization of parenteral nanoemulsions containing thalidomide. Eur J Pharm Sci 42:238–245

    Article  PubMed  Google Scholar 

  6. Assadpour E, Jafari S-M (2017) Spray drying of folic acid within nano-emulsions: optimization by Taguchi approach. Drying Technol 35:1152–1160

    Article  CAS  Google Scholar 

  7. Assadpour E, Jafari S-M, Maghsoudlou Y (2017) Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. Int J Biol Macromol 95:238–247

    Article  CAS  PubMed  Google Scholar 

  8. Assadpour E, Maghsoudlou Y, Jafari S-M, Ghorbani M, Aalami M (2016a) Evaluation of folic acid nano-encapsulation by double emulsions. Food Bioprocess Technol 9:2024–2032

    Article  CAS  Google Scholar 

  9. Assadpour E, Maghsoudlou Y, Jafari S-M, Ghorbani M, Aalami M (2016b) Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. Int J Biol Macromol 86:197–207

    Article  CAS  PubMed  Google Scholar 

  10. Bhosale RR, Osmani RA, Ghodake PP, Shaikh SM, Chavan SR (2014) Nanoemulsion: a review on novel profusion in advanced drug delivery. Indian J Pharm Biol Res 2:122

    Article  Google Scholar 

  11. Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 280:241–251

    Article  CAS  PubMed  Google Scholar 

  12. Bronaugh RL, Maibach HI (2002) Topical absorption of dermatological products. CRC Press

    Google Scholar 

  13. Chavda VP, Shah D (2017) A review on novel emulsification technique: a nanoemulsion. J Pharmacol Toxicol Stud 5:32–33

    Google Scholar 

  14. Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, Issa YS, Elmarzugi NA (2015) Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm 5:43–47

    CAS  Google Scholar 

  15. Chime SA, Kenechukwu FC, Attama AA (2014) Nanoemulsions—advances in formulation, characterization and applications in drug delivery. Appl Nanotechnol Drug Deliv 3:77–126

    Google Scholar 

  16. Choi AJ, Park CG, Han SH, Park CB (2010) Nanoemulsion formation and characterization of neutraceutical component with the sonication and self-assembly methods. Nanotech 1:928–929

    CAS  Google Scholar 

  17. Choradiya BR, Patil SB (2021) A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 339:116751

    Article  CAS  Google Scholar 

  18. Choudhury S, Dasgupta S, Patel DK, Ramani YR, Ghosh SK, Mazumder B (2013) Nanoemulsion as a carrier for topical delivery of aceclofenac. In: Advanced nanomaterials and nanotechnology. Springer

    Google Scholar 

  19. de Almeida Borges VR, Simon A, Cuello Sena AR, Cabral LM, de Sousa VP (2013) Nanoemulsion containing dapsone for topical administration: a study of in vitro release and epidermal permeation. Int J Nanomed 8:535

    Google Scholar 

  20. Delgado ÁV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309:194–224

    Article  CAS  PubMed  Google Scholar 

  21. Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 43:30–59

    Article  Google Scholar 

  22. Desai P, Patlolla RR, Singh M (2010) Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 27:247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS (2020) Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials 10:787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fasolo D, Schwingel L, Holzschuh M, Bassani V, Teixeira H (2007) Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. J Pharm Biomed Anal 44:1174–1177

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez P, André V, Rieger J, Kühnle A (2004) Nano-emulsion formation by emulsion phase inversion. Colloids Surf, A 251:53–58

    Article  CAS  Google Scholar 

  26. Floury J, Desrumaux A, Axelos MAV, Legrand J (2003) Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 58:227–238

    Article  Google Scholar 

  27. Foroozandeh P, Aziz AA (2018) Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 13:1–12

    Article  CAS  Google Scholar 

  28. Gorain B, Choudhury H, Kundu A, Sarkar L, Karmakar S, Jaisankar P, Pal TK (2014) Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf B: Biointerfaces 115:286–294

    Google Scholar 

  29. Halnor VV, Pande VV, Borawake DD, Nagare HS (2018) Nanoemulsion: a novel platform for drug delivery system. J Mat Sci Nanotechol 6:104

    Google Scholar 

  30. Huang Y, Dai W-G (2014) Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 4:18–25

    Article  PubMed  Google Scholar 

  31. Jafari SM, Fathi M, Mandala I (2021) Emerging product formation. Food Waste Recov 257–75

    Google Scholar 

  32. Jain KK (2007) Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener Dis 4:287–291

    Article  CAS  PubMed  Google Scholar 

  33. Kelmann RG, Kuminek G, Teixeira HF, Koester LS (2007) Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int J Pharm 342:231–239

    Article  CAS  PubMed  Google Scholar 

  34. Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L (2008) The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol 9:170–175

    Article  CAS  Google Scholar 

  35. Khan W, Ansari VA, Hussain Z, Siddique NF (2018) Nanoemulsion: a droplet nanocarrier system for enhancing bioavailability of poorly water soluble drugs. Res J Pharm Technol 11:5191–5196

    Article  Google Scholar 

  36. Khani S, Keyhanfar F, Amani A (2016) Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv 23:2035–2043

    Article  CAS  PubMed  Google Scholar 

  37. Klinkesorn U, McClements DJ (2009) Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chem 114:1308–1315

    Article  CAS  Google Scholar 

  38. Kreilgaard M, Pedersen EJ, Jaroszewski JW (2000) NMR characterisation and transdermal drug delivery potential of microemulsion systems. J Control Release 69:421–433

    Article  CAS  PubMed  Google Scholar 

  39. Lallemand F, Daull P, Benita S, Buggage R, Garrigue J-S (2012) Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv

    Google Scholar 

  40. Landreau E, Aguni Y, Hamaide T, Chevalier Y (2009) Preparation of nanoemulsions by spontaneous emulsification and stabilization with poly (caprolactone)‐b‐poly (ethylene oxide) block copolymers. Emuls Sci Technol 191–207

    Google Scholar 

  41. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    Article  CAS  PubMed  Google Scholar 

  42. Leister N, Karbstein HP (2020) Evaluating the stability of double emulsions—a review of the measurement techniques for the systematic investigation of instability mechanisms. Colloids Interfaces 4:8

    Google Scholar 

  43. Li Y, Hu M, Xiao H, Du Y, Decker EA, McClements DJ (2010) Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. Eur J Pharm Biopharm 76:38–47

    Article  CAS  PubMed  Google Scholar 

  44. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  45. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats

    Google Scholar 

  46. Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A (2014) Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 21:148–154

    Article  CAS  PubMed  Google Scholar 

  47. Mallick S, Pattnaik S, Swain K, De PK (2007) Current perspectives of solubilization: potential for improved bioavailability. Drug Dev Ind Pharm 33:865–873

    Article  CAS  PubMed  Google Scholar 

  48. Marianecci C, Rinaldi F, Hanieh PN, Paolino D, Di Marzio L, Carafa M (2015) Nose to brain delivery: new trends in amphiphile-based “soft” nanocarriers. Curr Pharm Des 21:5225–5232

    Article  CAS  PubMed  Google Scholar 

  49. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    Article  CAS  Google Scholar 

  50. Mendes S, Graziani SR, Vitório TS, Padoveze AF, Hegg R, Bydlowski SP, Maranhão RC (2009) Uptake by breast carcinoma of a lipidic nanoemulsion after intralesional injection into the patients: a new strategy for neoadjuvant chemotherapy. Gynecol Oncol 112:400–404

    Article  CAS  PubMed  Google Scholar 

  51. Mishra RK, Soni GC, Mishra R (2014) Nanoemulsion: a novel drug delivery tool. Int J Pharma Res Rev 3:32–43

    Google Scholar 

  52. Mitra AK, Cholkar K, Mandal A (2017) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. William Andrew

    Google Scholar 

  53. Ohshima H, Makino K (2014) Colloid and interface science in pharmaceutical research and development. Elsevier

    Google Scholar 

  54. Parker G (2001) Encyclopedia of materials: science and technology

    Google Scholar 

  55. Pathak K, Pattnaik S, Swain K (2018) Application of nanoemulsions in drug delivery. Nanoemulsions (Elsevier)

    Google Scholar 

  56. Pattnaik S, Pathak K (2017) Mesoporous silica molecular sieve based nanocarriers: transpiring drug dissolution research. Curr Pharm Des 23:467–480

    Article  CAS  PubMed  Google Scholar 

  57. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131

    Article  CAS  PubMed  Google Scholar 

  58. Priya S, Koland M, Kumari S (2015) Nanoemulsion components screening of quetiapine fumarate: effect of surfactant and co surfactant. Asian J Pharm Clin Res 8:136–140

    Google Scholar 

  59. Ragelle H, Crauste-Manciet S, Seguin J, Brossard D, Scherman D, Arnaud P, Chabot GG (2012) Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int J Pharm 427:452–459

    Article  CAS  PubMed  Google Scholar 

  60. Rahn-Chique K, Puertas AM, Romero-Cano MS, Rojas C, Urbina-Villalba G (2012) Nanoemulsion stability: experimental evaluation of the flocculation rate from turbidity measurements. Adv Coll Interface Sci 178:1–20

    Article  CAS  Google Scholar 

  61. Rai VK, Mishra N, Yadav KS, Yadav NP (2018) Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release 270:203–225

    Article  CAS  PubMed  Google Scholar 

  62. Sarker A, Shimu IJ, Tuhin RH, Raju AA (2015) Nanoemulsion: an excellent mode for delivery of poorly soluble drug through different routes. J Chem Pharm Res 7:966–976

    CAS  Google Scholar 

  63. Shah P, Bhalodia D, Shelat P (2010) Nanoemulsion: a pharmaceutical review. Syst Rev Pharm 1(1):24

    Google Scholar 

  64. Shakeel F, Shafiq S, Haq N, Alanazi FK, Alsarra IA (2012) Nanoemulsions as potential vehicles for transdermal and dermal delivery of hydrophobic compounds: an overview. Expert Opin Drug Deliv 9:953–974

    Article  CAS  PubMed  Google Scholar 

  65. Sharma N, Mishra S, Sharma S, Sharma RK (2013) Preparation and optimization of nanoemulsions for targeting drug delivery. Int J Drug Dev Res 5

    Google Scholar 

  66. Sharma N, Bansal M, Visht S, Sharma PK, Kulkarni GT (2010) Nanoemulsion: a new concept of delivery system. Chron Young Sci 1:2–6

    Google Scholar 

  67. Söderlind E, Wollbratt M, von Corswant C (2003) The usefulness of sugar surfactants as solubilizing agents in parenteral formulations. Int J Pharm 252:61–71

    Article  PubMed  Google Scholar 

  68. Sood S, Jain K, Gowthamarajan K (2014) Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf, B 113:330–337

    Article  CAS  Google Scholar 

  69. Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402

    Article  CAS  PubMed  Google Scholar 

  70. Sutradhar KB, Amin ML (2014) Nanoemulsions: increasing possibilities in drug delivery. Eur J Nanomedicine 6:53–53

    Article  Google Scholar 

  71. Sutradhar KB, Khatun S, Luna IP (2013) Increasing possibilities of nanosuspension. J Nanotechnol

    Google Scholar 

  72. Swarbrick J, Boylan J (1988) Encyclopedia of pharmaceutical technology, vol 3. Marcel Dekker, Inc., New York

    Google Scholar 

  73. Tadros TF (2005) Surfactants in pharmaceutical formulations. Appl Surfactants: Princ Appl 13

    Google Scholar 

  74. Tanaka K-I, Kurotsu S, Asano T, Yamakawa N, Kobayashi D, Yamashita Y, Yamazaki H, Ishihara T, Watanabe H, Maruyama T (2014) Superiority of pulmonary administration of mepenzolate bromide over other routes as treatment for chronic obstructive pulmonary disease. Sci Rep 4:1–11

    Article  Google Scholar 

  75. Tenjarla S (1999) Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carr Syst 16

    Google Scholar 

  76. Tiwari SB, Amiji MM (2006) Nanoemulsion formulations for tumor-targeted delivery. In: Nanotechnology for cancer therapy. CRC Press

    Google Scholar 

  77. Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444

    Article  CAS  PubMed  Google Scholar 

  78. Verwey EJW (1940) Electrical double layer and stability of emulsions. Trans Faraday Soc 35:192–203

    Article  Google Scholar 

  79. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27:R713–R715

    Article  CAS  PubMed  Google Scholar 

  80. Wadle A, Tesmann H, Leonard M, Förster T (1997) Phase inversion in emulsions: CAPICO–concept and application. surfactants in cosmetics. In: Rieger MM, Rhein LD (eds). Dekker, New York

    Google Scholar 

  81. Wilson RJ, Li Y, Yang G, Zhao C-X (2022) Nanoemulsions for drug delivery. Particuology 64:85–97

    Article  CAS  Google Scholar 

  82. Yilmaz S, Kaya E, Kisacam MA (2017) The effect on oxidative stress of aflatoxin and protective effect of lycopene on aflatoxin damage. Aflatoxin-Control, Anal, Detect Health Risks 30:67–90

    Google Scholar 

  83. Zeytunluoglu A, Arslan I (2022) Current perspectives on nanoemulsions in targeted drug delivery: an overview. In: Handbook of research on nanoemulsion applications in agriculture, food, health, and biomedical sciences. pp 118–40

    Google Scholar 

  84. Zhang J, Peppard TL, Reineccius GA (2015) Preparation and characterization of nanoemulsions stabilized by food biopolymers using microfluidization. Flavour Fragr J 30:288–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Amiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abaszadeh, F., Ashoub, M.H., Amiri, M. (2023). Nanoemulsions Challenges and Future Prospects as a Drug Delivery System. In: Husen, A., Bachheti, R.K., Bachheti, A. (eds) Current Trends in Green Nano-emulsions. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5398-1_13

Download citation

Publish with us

Policies and ethics