Skip to main content

Cellular Signal-Regulated Schwann Cell Myelination and Remyelination

  • Chapter
  • First Online:
Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Increasing studies have demonstrated multiple signaling molecules responsible for oligodendrocytes and Schwann cells development such as migration, differentiation, myelination, and axo-glial interaction. However, complicated roles in these events are still poorly understood. This chapter focuses on well established intracellular signaling transduction and recent topics that control myelination and are elucidated from accumulating evidences. The underlying molecular mechanisms, which involved in membrane trafficking through small GTPase Arf6 and its activator cytohesins, demonstrate the crosstalk between well established intracellular signaling transduction and a new finding signaling pathway in glial cells links to physiological phenotype and essential role in peripheral nerve system (PNS). Since Arf family proteins affect the expression levels of myelin protein zero (MPZ) and Krox20, which is a transcription factor regulatory factor in early developmental stages of Schwann cells, Arf proteins likely to be key regulator for Schwann cells development. Herein, we discuss how intracellular signaling transductions in Schwann cells associate with myelination in CNS and PNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interaction with Gα12/13 and RhoA. Nat Commun 6:6122

    Article  CAS  PubMed  Google Scholar 

  • Barros CS, Nguyen T, Spencer KS, Nishiyama A, Colognato H, Muller U (2009) Beta1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth. Development 136:2717–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basak S, Desai DJ, Rho EH, Ramos R, Maurel P, Kim HA (2015) E-cadherin enhances neuregulin signaling and promotes Schwann cell myelination. Glia 63:1522–1536

    Article  PubMed  Google Scholar 

  • Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, Patti GJ, Milbrandt J (2014) Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 17:1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bercury KK, Macklin WB (2015) Dynamics and mechanisms of CNS myelination. Dev Cell 32:447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biffiger K, Bartsch S, Montag D, Aguzzi A, Schachner M, Bartsch U (2000) Severe hypomyelination of the murine CNS in the absence of myelin-associated glycoprotein and Fyn tyrosine kinase. J Neurosci 20:7430–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder MD, Cate HS, Prieto AL, Kemper D, Butzkueven H, Gresle MM, Cipriani T, Jokubaitis VG, Carmeliet P, Kilpatrick TJ (2008) Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J Neurosci 28:5195–5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder MD, Xiao J, Kemper D, Ma GZ, Murray SS, Kilpatrick TJ (2011) Gas6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone-induced demyelination. PLoS One 6:e17727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boshans RL, Szanto S, van Aelst L, D’Souza-Schorey C (2000) ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol Cell Biol 20:3685–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhy D, Timmerman V (2013) Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 74:391–396

    Article  CAS  PubMed  Google Scholar 

  • Buser AM, Eme B, Werner HB, Nave KA, Schareren-Wiemers N (2009) The septin cytoskeleton in myelinating glia. Mol Cell Neurosci 40:156–166

    Article  CAS  PubMed  Google Scholar 

  • Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8:1476–1485

    Article  CAS  PubMed  Google Scholar 

  • Chan JR, Cosgaya JM, Wu YJ, Shooter EM (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci U S A 98:14661–14668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JR, Jolicoeur C, Yamauchi J, Elliott J, Fawcett JP, Ng BK, Cayouette M (2006) The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314(5800):832–836

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, Corfas G (2006) Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 26:3079–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford AT, Desai D, Gokina P, Basak S, Kim HA (2008) E-cadherin expression in postnatal Schwann cells is regulated by the cAMP-dependent protein kinase a pathway. Glia 56:1637–1647

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358

    Article  PubMed  CAS  Google Scholar 

  • Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I, Chouery E, Chaouch M, Kassouri N, Jabbour R, Grid D, Mégarbané A, Haase G, Lévy N (2007) Mutations in FGD encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 81:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domènech-Estévez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in PNS. J Neurosci 36:4506–4521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Urso D, Prior R, Greiner-Petter R, Gabreëls-Festen AA, Müller HW (1998) Overloaded endoplasmic reticulum-Golgi compartments, a possible pathomechanism of peripheral neuropathies caused by mutations of the peripheral myelin protein PMP22. J Neurosci 18:731–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Etxaniz U, Pérez-San Vicente A, Gago-López N, García-Dominguez M, Iribar H, Aduriz A, Pérez-López V, Burgoa I, Irizar H, Muñoz-Culla M, Vallejo-lllarramendi A, Leis O, Matheu A, Martin AG, Otaegui D, López-Mato MP, Gutilérrez-Rivera A, MacLellan R, Izeta A (2014) Neural-competent cells of adult human dermis belong to the Schwann lineage. Stem Cell Reports 3:774–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizi GM, Taioli F, Cavallaro T, Rigatelli F, Simonati A, Mariani G, Perrone P, Rizzuto N (2000) Focally folded myelin in Charcot-Marie-Tooth neuropathy type 1B with Ser49Leu in the myelin protein zero. Acta Neuropathol 100:299–304

    Article  CAS  PubMed  Google Scholar 

  • Fannon AM, Sherman DL, Ilyina-Gragerova G, Brophy PJ, Friedrich VL Jr, Colman DR (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129:189–202

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Valle C, Gorman D, Gomez AM, Bunge MB (1997) Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J Neurosci 17:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fledrich R, Stassart RM, Klink A, Rasch LM, Prukop T, Haag L, Cresnik D, Kungl T, Abdelaal TA, Keric N, Stadelmann C, Brück W, Nave KA (2014) Soluble neurogulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med 20:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, Avila RL, Kirschner DA, Macklin WB (2008) Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci 28:7174–7183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco M, Peters PJ, Boretto J, van Donselaar E, Neri A, D’Souza-Schorey C, Chavrier P (1999) EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J 16:5445–5454

    Google Scholar 

  • Fujita N, Kemper A, Dupree J, Nakayasu H, Bartsch U, Schachner M, Maeda N, Suzuki K, Popko B (1998) The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper CNS but not peripheral nervous system myelination. J Neurosci 18:1970–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Manabu M, Bialas A, Chang BS, Stevens B, Corfas G, Piao X (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121

    Article  PubMed  CAS  Google Scholar 

  • Giovannini M, Robanus-Maandag E, Niwa-Kawakita M, van der Valk M, Woodruff JM, Goutebroze L, Mérel P, Berns A, Thomas G (1999) Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev 13:978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godowski PJ, Mark MR, Chen J, Sadick MD, Raab H, Hammonds RG (1995) Reevaluation of the roles of protein S and gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3. Cell 82:355–358

    Article  CAS  PubMed  Google Scholar 

  • Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T, Pieper A, Ruhwedel T, Sereda MW, Nave KA (2012) Genetic disruption of PTEN in a novel mouse model of tomaculous neuropathy. EMBO Mol Med 4:486–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfinger LE, Ptak C, Jeffery ED, Shabanowitz J, Hunt DF, Ginsberg MH (2006) RLIP (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. J Cell Biol 174:877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudarzi S, Rivera A, Butt AM, Hafizi S (2016) Gas6 promotes oligodendrogenesis and myelination in adult central nervous system and after lysolecithin-induced demyelination. ASN Neuro 14. pii: 1759091416668430

    Google Scholar 

  • Guo L, Moon C, Niehaus K, Zheng Y, Ratner N (2012) Rac1 controls Schwann cell myelination through cAMP and NF2/merlin. J Neurosci 32:17251–17261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Moon C, Zheng Y, Ratner N (2013) Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling. J Neurosci 61:1906–1921

    Google Scholar 

  • Hasse B, Bosse F, Muller HW (2002) Proteins of peripheral myelin are associated with glycosphingolipid/cholesterol-enriched membranes. J Neurosci Res 69:227–232

    Article  CAS  PubMed  Google Scholar 

  • Hempstead BL (2005) Coupling neurotrophins to cell migration through selective guanine nucleotide exchange factor activation. Proc Natl Acad Sci U S A 102:5645–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17:496–510

    Article  CAS  PubMed  Google Scholar 

  • Horn M, Baumann R, Pereira JA, Sidiropoulos PN, Somandin C, Welzl H, Stendel C, Lühman T, Wessig C, Toyka KV, Relvas JB, Senderek J, Suter U (2012) Myelin is dependent on the Charcot-Marie-Tooth Type 4H disease culprit protein FRABIN/FGD4 in Schwann cells. Brain 135:3567–3583

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Bai X, Bowen JR, Dolat L, Korobova F, Yu W, Baas PW, Svitkina T, Gallo G, Spiliotis ET (2012) Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr Biol 22:1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida M, Koike H, Ando T, Sugiura M, Yamamoto M, Tanaka F, Sobue G (2012) A novel MPZ mutation in Charcot-Marie-Tooth disease type 1B with focally folded myelin and multiple entrapment neuropathies. Neuromuscul Disord 22:166–169

    Article  PubMed  Google Scholar 

  • Ito H, Atsuzawa K, Morishita R, Usuda N, Sudo K, Iwamoto I, Mizutani K, Katoh-Semba R, Nozawa Y, Asano T, Nagata K (2009) Sept8 controls the binding of vesicle-associated membrane protein 2 to synaptophysin. J Neurochem 108:867–880

    Article  CAS  PubMed  Google Scholar 

  • Jin F, Dong B, Georgiou J, Jiang Q, Zhang J, Bharioke A, Qiu F, Lommel S, Feltri ML, Wrabetz L, Roder JC, Eyer J, Chen X, Peterson AC, Siminovitch KA (2011) N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 138:1329–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochański A, Drac H, Jedrzejowska H, Hausmanowa-Petrusewicz I (2003) Focally folded myelin in Charcot-Marie-Tooth type 1B disease is associated with Asn131Lys mutation in myelin protein zero gene: short report. Eur J Neurol 10:547–549

    Article  PubMed  Google Scholar 

  • Krämer-Albers EM, White R (2011) From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 68:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, Biobel CP, Quattrini A, Salzer JL, Taveggla C (2011) TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 14:857–865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lallemand D, Curto M, Saotome I, Giovannini M, MacClatchey AI (2003) NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17:1090–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laursen LS, Chan CW, French-Constant C (2009) An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J Neurosci 29:9174–9185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons KF, Naylor SG, Scholze A, Talbot WS (2009) Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons. Nat Genet 41:854–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchesin V, Montagnac G, Chavrier P (2015) ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor. PLoS One 10:e0121747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL (2007) Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J Cell Biol 178:861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer Z, Hörste G, Nave KA (2006) Animal models of inherited neuropathies. Curr Opin Neurol 19:464–473

    Article  Google Scholar 

  • Mityamoto Y, Torii T, Tanoue A, Kawahara K, Arai M, Tsumura H, Ogata T, Nagao M, Terada N, Yamamoto M, Takashima S, Yamauchi J (2017) Neuregulin-1 type III knockout mice exhibit delayed migration of Schwann cell precursors. Biochem Biophys Res Commun 486:506–513

    Article  CAS  Google Scholar 

  • Miyamoto Y, Torii T, Nakamura K, Takashima S, Sanbe A, Tanoue A, Yamauchi J (2013) Signaling through Arf6 guanine-nucleotide exchange factor cytohesin-1 regulates migration in Schwann cells. Cell Signal 25:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, Ito A, Ogata T, Terada N, Tanoue A, Yamauchi J (2015) Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell 26:3489–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogha A, Harty BL, Carlin D, Joseph J, Sanchez NE, Suter U, Piao X, Cavalli V, Monk KR (2016) Gpr126/Adgrg6 has Schwann cell autonomous and nonautonomous function in peripheral nerve injury and repair. J Neurosci 36:12351–12367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, Moens CB, Talbot WS (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan SP, Flores AI, Wang F, Macklin WB (2009) Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 29:6860–6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nave KA, Salzer JL (2006) Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16:492–500

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and function. Annu Rev Cell Dev Biol 30:503–533

    CAS  PubMed  Google Scholar 

  • Nawaz S, Sánchez P, Schmitt S, Snaidero N, Mitkovski M, Velte C, Brückner BR, Alexopoulos I, Czopka T, Jung SY, Rhee JS, Janshoff A, Witke W, Schaap IAT, Lyons DA, Simons M (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 34:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21:759–773

    Article  CAS  PubMed  Google Scholar 

  • Noseda R, Guerrero-Valero M, Alberizzi V, Previtali SC, Sherman DL, Palmisano M, Huganir RL, Nave KA, Cuenda A, Feltri ML, Brophy PJ, Bolino A (2016) Kif13b regulates PNS and CNS myelination through the Dlg1 scaffold. PLoS Biol 14:2100–2440

    Article  CAS  Google Scholar 

  • Novak N, Bar V, Sabanay H, Frechter S, Jaegle M, Snapper SB, Meijer D, Peles E (2011) N-WASP is required for membrane wrapping and myelination by Schwann cells. J Cell Biol 192:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type 4 collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7:ra76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palazuelos J, Crawford HC, Klingener M, Sun B, Karelis J, Raines EW, Aguirre A (2014) TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination. J Neurosci 34:11884–11896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazuelos J, Klingener M, Raines EW, Crawford HC, Aguirre A (2015) Oligodendrocyte regeneration and CNS remyelination require TACE/ADAM17. J Neurosci 35:12241–12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8:654–667

    Article  CAS  PubMed  Google Scholar 

  • Patzig J, Jahn O, Wichert SP, de Monasterio-Schrader P, Rosfa S, Kuharev L, Yan K, Bormuth I, Bremer J, Aguzzi A, Orfaniotou F, Hesse D, Schwab MH, Möbius W, Nave KA, Werner HB (2011) Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 31:16369–16386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Möbius W, Goebbels S, Schaeren-Wiemers N, Nave KA, Werner HB (2016) Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. elife 5. pii:e17119

    Google Scholar 

  • Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG (2007) The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 17:1623–1634

    Article  CAS  PubMed  Google Scholar 

  • Perlin JR, Talbot WS (2007) Putting the glue in glia: Necls mediate Schwann cell–axon adhesion. J Cell Biol 178:721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin JR, Lush ME, Stephens WZ, Piotrowski T, Talbot WS (2011) Neuronal neuregulin 1 type III directs Schwann cell migration. Development 138:4639–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooya S, Liu X, Kumar VB, Anderson J, Imai F, Zhang W, Ciraolo G, Ratner N, Setchell KD, Yoshida Y, Jankowski MP, Dasgupta B (2014) The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun 5:4993

    Article  CAS  PubMed  Google Scholar 

  • Prieto AL, Weber JL, Tracy S, Heeb MJ, Lai C (1999) Gas6, a ligand for the receptor protein-tyrosine kinase Tyro-3, is widely expressed in the central nervous system. Brain Res 816:646–661

    Google Scholar 

  • Prieto AL, Weber JL, Lai C (2000) Expression of the receptor protein‐tyrosine kinases Tyro‐3, Axl, and Mer in the developing rat central nervous system. J Comp Neurol 425:295–314

    Article  CAS  PubMed  Google Scholar 

  • Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Förster R, Alon R, Fraemohs L, Dreck K, Weber C, Lämmermann T, Sixt M, Kolanus W (2009) Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood 113:5801–5810

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG (1999) Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci 112:855–866

    CAS  PubMed  Google Scholar 

  • Rossor AM, Polke JM, Houlden H, Reilly MM (2013) Clinical implications of genetic advances in Charcot-Marie-Tooth disease. Nat Rev Neurol 9:562–571

    Article  CAS  PubMed  Google Scholar 

  • Rothlin CV, Carreara-Silva EA, Bosurgi L, Ghosh S (2015) TAM receptor signaling in immune homeostasis. Annu Rev Immunol 33:355–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadok A, Marshall CJ (2014) Rho GTPases: masters of cell migration. Small GTPases 5:e29710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salzer JL (2015) Schwann cell myelination. Cold Spring Harb Perspect Biol 7:a020529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santy LC, Casanova JE (2001) Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol 154:599–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151:143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel I, Adamsky K, Eshed Y, Milo F, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN, Peles E (2007) A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci 10:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stendel C, Roos A, Deconinck T, Pereira J, Castagner F, Niemann A, Kirscher J, Korinthenberg R, Ketelsen UP, Battaloglu E, Parman Y, Nicholson G, Ouvrier R, Seeger J, De Jonghe P, Weis J, Krüttgen A, Rudnik-Schöneborn S, Bergmann C, Suter U, Zerres K, Timmerman V, Relvas JB, Senderek J (2007) Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 81:158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    Article  CAS  PubMed  Google Scholar 

  • Taveggia C, Salzer JL (2007) PARsing the events of myelination. Nat Neurosci 10:17–18

    Article  CAS  PubMed  Google Scholar 

  • Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, Einheber S, Salzer JL (2008) Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56:284–293

    Article  PubMed  Google Scholar 

  • Tep C, Kim ML, Opincariu LI, Limpert AS, Chan JR, Appel B, Carter BD, Yoon SO (2012) Brain-derived neurotrophic factor (BDNF) induces polarized signaling of small GTPase (Rac1) protein at the onset of Schwann cell myelination through partitioning-defective 3 (Par3) protein. J Biol Chem 287:1600–1608

    Article  CAS  PubMed  Google Scholar 

  • Torii T, Miyamoto Y, Sanbe A, Nishimura K, Yamauchi J, Tanoue A (2010) Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem 285:24270–24281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torii T, Miyamoto Y, Onami N, Tsumura H, Nemoto N, Kawahara K, Kato M, Kotera J, Nakamura K, Tanoue A, Yamauchi J (2013) In vivo expression of the Arf6 guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves. J Mol Neurosci 51:522–531

    Article  CAS  PubMed  Google Scholar 

  • Torii T, Ohno N, Miyamoto Y, Kawahara K, Saitoh Y, Nakamura K, Takashima S, Sakagami H, Tanoue A, Yamauchi J (2015) Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves. Biochem Biophys Res Commun 460:819–825

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Andrews SB, Cootauco C, Quarles R (1989) The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J Cell Biol 109:2417–2426

    Article  CAS  PubMed  Google Scholar 

  • Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367:572–576

    Article  CAS  PubMed  Google Scholar 

  • Werner HB, Krämer-Albers EM, Strenzke N, Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P, Möbius W, Moser T, Griffiths IR, Nave KA (2013) A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 61:567–586

    Article  PubMed  Google Scholar 

  • White R, Krämer-Albers EM (2014) Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 7:284

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A 101:8774–8779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Miyamoto Y, Tanoue A, Shooter EM, Chan JR (2005) Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proc Natl Acad Sci U S A 102:14889–14894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Miyamoto Y, Jonah CR, Tanoue A (2008) ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. J Cell Biol 181:351–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Miyamoto Y, Hamasaki H, Sanbe A, Kusakawa S, Nakamura A, Tsumura H, Maeda M, Nemoto N, Kawahara K, Torii T, Tanoue A (2011) The atypical Guanine-nucleotide exchange factor, Dock7, negatively regulates Schwann cell differentiation and myelination. J Neurosci 31:12579–12592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Miyamoto Y, Torii T, Takashima S, Kondo K, Kawahara K, Nemoto N, Chan JR, Tsujimoto G, Tanoue A (2012) Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development. Sci Signal 5:ra69

    Article  PubMed  CAS  Google Scholar 

  • Zollinger DR, Chang KJ, Baalman K, Kim S, Rasband MN (2015) The polarity protein Pals1 regulates radial sorting of axon. J Neurosci 35:10474–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C, Leonoudakis D, Lariosa-Willingham K, Kronenberg G, Gertz K, Soderling SH, Miller RH, Barres BA (2015) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34:152–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Yamauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torii, T., Miyamoto, Y., Yamauchi, J. (2019). Cellular Signal-Regulated Schwann Cell Myelination and Remyelination. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_1

Download citation

Publish with us

Policies and ethics