Skip to main content

India’s Major Subsurface Pollutants Under Future Climatic Scenarios: Challenges and Remedial Solutions

  • Chapter
  • First Online:
Contemporary Environmental Issues and Challenges in Era of Climate Change

Abstract

Climatic variabilities may alter biogeochemical interactions with the subsurface environment. As of now, arsenic, fluoride, nitrate, NORMs, and hydrocarbon pollutants cover many geographical area of India. It is expected that the pollution load will increase in the upcoming decades, which may significantly affect the soil-water resources. Thus, a better understanding of behaviors of these pollutants under future climatic scenarios is imperative. In this direction, this chapter contributes the state-of-art knowledge on the challenges and issues related to India’s major pollutants under current and future climatic scenarios. In the first section, the environmental fate, current expansions of these pollutants have been highlighted for polluted Indian geographical regions along with their sources, toxicity, and behaviors in the subsurface. Thereafter, a paragraph in each section is presented to elaborate the impacts of climatic variabilities on the future pollution load and its coverage. Next, the in-depth literature is discussed to solve the issues related to the management and remediation of these pollutants under future climatic scenarios. This chapter will help to frame and implement the remediation and management for the polluted soil-water systems under different climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhishek, Yadav BK, Gupta PK (2018a) Morphological variations in unsaturated porous media due to LNAPL contamination. In: Poster in Japan Geoscience Union (JpGU) Chiba-city, Japan, May 20–24 2018

    Google Scholar 

  • Abhishek, Gupta PK, Yadav BK, Amandeep A, Tomar AS, Kataria S, Kumar S (2018b) Phytoremediation of toluene polluted groundwater under nutrient loading using constructed wetlands. In: Poster presentation (B33G-2766) in AGU Fall Meeting 2018 held in Washington, DC, USA during 10–14 December 2018

    Google Scholar 

  • Ahamed S, Sengupta MK, Mukherjee A, Hossain MA, Das B, Nayak B et al (2006) Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Sci Total Environ 370(2–3):310–322

    Article  CAS  Google Scholar 

  • Alam MO, Shaikh WA, Chakraborty S, Avishek K, Bhattacharya T (2016) Groundwater arsenic contamination and potential health risk assessment of Gangetic Plains of Jharkhand, India. Expo Health 8(1):125–142

    Article  CAS  Google Scholar 

  • Alrakabi M, Singh G, Bhalla A, Kumar S, Kumar S, Srivastava A et al (2012) Study of uranium contamination of ground water in Punjab state in India using X-ray fluorescence technique. J Radioanal Nucl Chem 294(2):221–227

    Article  CAS  Google Scholar 

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation, process fundamentals and mathematical models, ISBN-10 0-471-65043-9. Wiley-Interscience. https://doi.org/10.1002/047173862X

    Book  Google Scholar 

  • Ando M, Tadano M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, Chen X (2001) Health effects of fluoride pollution caused by coal burning. Sci Total Environ 271(1–3):107–116

    Article  CAS  Google Scholar 

  • Babu MNS, Somashekar RK, Kumar SA, Shivanna K, Krishnamurthy V, Eappen KP (2008) Concentration of uranium levels in groundwater. Int J Environ Sci Technol 5(2):263–266

    Article  CAS  Google Scholar 

  • Bailey RT (2017) Selenium contamination, fate, and reactive transport in groundwater in relation to human health. Hydrogeol J 25(4):1191–1217

    Article  CAS  Google Scholar 

  • Bajaj M, Eiche E, Neumann T, Winter J, Gallert C (2011) Hazardous concentrations of selenium in soil and groundwater in north-West India. J Hazard Mater 189(3):640–646

    Article  CAS  Google Scholar 

  • Basu S, Yadav BK, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwater in pot-scale wetlands. Environ Sci Pollut Res 22(24):20041–20049

    Article  CAS  Google Scholar 

  • Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium (VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2(3):1621–1634

    Article  CAS  Google Scholar 

  • Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Tot Environ 612:148–169

    Article  CAS  Google Scholar 

  • Boisson A, Baisset M, Alazard M et al (2014) Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structures: case of a percolation tank in a crystalline aquifer in India. J Hydrol 518(Part B):1620–1633

    Article  Google Scholar 

  • Bondu R, Cloutier V, Rosa E (2018) Occurrence of geogenic contaminants in private wells from a crystalline bedrock aquifer in western Quebec, Canada: geochemical sources and health risks. J Hydrol 559:627–637

    Article  CAS  Google Scholar 

  • Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environ Monit Assess 170(1–4):345–351

    Article  CAS  Google Scholar 

  • Canadian Environmental Protection Act (CEPA) (1994) Priority substances list supporting document for inorganic fluorides. Prepared by Eco-Health Branch & Environment Canada, Ottawa

    Google Scholar 

  • CGWB (2010) Central ground water board: groundwater quality in shallow aquifers of India. CGWB, Faridabad, p 117

    Google Scholar 

  • Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK et al (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111(9):1194–1201

    Article  CAS  Google Scholar 

  • Chandrashekhar AK, Chandrasekharam D, Farooq SH (2016) Contamination and mobilization of arsenic in the soil and groundwater and its infuence on the irrigated crops, Manipur Valley, India. Environ Earth Sci 75(2):142

    Article  CAS  Google Scholar 

  • Chatterjee D, Halder D, Majumder S, Biswas A, Nath B, Bhattacharya P et al (2010) Assessment of arsenic exposure from groundwater and rice in Bengal Delta region, West Bengal, India. Water Res 44(19):5803–5812

    Article  CAS  Google Scholar 

  • Chatterjee S, Chetia M, Voronina A, Gupta DK (2017) Prospects of combating arsenic: physico-chemical aspects. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solutions. Springer International Publishing, Cham, pp 103–121

    Chapter  Google Scholar 

  • Chaudhry SA, Zaidi Z, Siddiqui SI (2017) Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): modelling and process optimization. J Mol Liq 229:230–240

    Article  CAS  Google Scholar 

  • Chauhan VS, Dwivedi PK, Iyengar L (2007) Investigations on activated alumina based domestic defluoridation units. J Hazard Mater 139(1):103–107

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016a) Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle ganga plain, India. Chemosphere 152:520–529

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016b) Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: risk evaluation. Environ Sci Pollut Res 23(10):9492–9504

    Article  CAS  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC et al (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108(5):393–397

    Article  CAS  Google Scholar 

  • Das S, Bora SS, Yadav RNS, Barooah M (2017) A metagenomic approach to decipher the indigenous microbial communities of arsenic contaminated groundwater of Assam. Genomics Data 12:89–96

    Article  Google Scholar 

  • Das N, Das A, Sarma KP, Kumar M (2018) Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere 194:755–772

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2003a) Quality of underground water and its contribution towards selenium enrichment of the soil–plant system for a seleniferous region of northwest India. J Hydrol 272(1–4):120–130

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2003b) Distribution and management of seleniferous soils. Adv Agron 79(1):119–184

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2016) Selenium in groundwater and its contribution towards daily dietary se intake under different hydrogeological zones of Punjab, India. J Hydrol 533:615–626

    Article  CAS  Google Scholar 

  • Dhiman SD, Keshari AK (2006) Hydrogeochemical evaluation of high-fluoride groundwaters: a case study from Mehsana District, Gujarat, India. Hydrol Sci J 51(6):1149–1162

    Article  CAS  Google Scholar 

  • Dobson R, Schroth MH, Zeyer J (2007) Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid. J Contam Hydrol 94:235–248

    Article  CAS  Google Scholar 

  • Eiche E (2015) Microscale distribution and elemental associations of Se in seleniferous soils in Punjab, India. Environ Sci Pollut Res 22(7):5425–5436

    Article  CAS  Google Scholar 

  • Eiche E, Bardelli F, Nothstein AK, Charlet L, Göttlicher J, Steininger R et al (2015) Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci Total Environ 505:952–961

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14(1):1–10

    Article  CAS  Google Scholar 

  • Essaid HI, Bekins BA, Cozzarelli IM (2015) Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resour Res 51(7):4861–4902

    Article  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Shu-mei WL, Krupka KM (2000) Reduction of U (VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Acta 64(18):3085–3098

    Article  CAS  Google Scholar 

  • Gardenas A, Simunek J, Jarvis NJ, van Genuchten MT (2006) Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field. J Hydrol 329:647–660

    Article  Google Scholar 

  • Ghosh S, Sar P (2013) Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). Water Res 7:6992–7005

    Article  CAS  Google Scholar 

  • Gupta PK, Joshi P (2017) Assessing groundwater resource vulnerability by coupling GIS based DRASTIC and solute transport model in Ajmer District, Rajasthan. J Geol Soc India (Springer). https://doi.org/10.1007/s12594-018-0958-y

    Article  Google Scholar 

  • Gupta PK, Sharma D (2018) Assessments of hydrological and hydro-chemical vulnerability of groundwater in semi-arid regions of Rajasthan, India. Sustain Water Resour Manag:1–15. https://doi.org/10.1007/s40899-018-0260-6

    Article  Google Scholar 

  • Gupta PK, Yadav BK (2017a) Bioremediation of non-aqueous phase liquids (NAPLS) polluted soil and water resources. In: Chapter 8, Environmental pollutants and their bioremediation approaches, ISBN 9781138628892. CRC Press, Taylor and Francis Group, Florida

    Google Scholar 

  • GuptaPK,YadavBK (2017b)Role of climatic variability on fate and transport of LNAPL pollutants in subsurface. In: Session H060: groundwater response to climate change and variability, AGU fall meeting 2017, New Orleans, USA. (Abstract ID: 220494)

    Google Scholar 

  • Gupta PK, Yadav BK (2017c) Effects of climatic variation on dissolution of LNAPL pollutants in subsurface environment. In: Chapter 8, Climate change resource conservation and sustainability strategies, ISBN 9789384871086. DBH Publishers and Distributors, New Delhi

    Google Scholar 

  • Gupta PK, Yadav BK (2019) Subsurface processes controlling reuse potential of treated wastewater under climate change conditions. In: Water conservation, recycling and reuse: issues and challenges. Springer, Singapore, pp 147–170

    Chapter  Google Scholar 

  • Gupta PK, Shashi R, Yadav BK (2013) BTEX biodegradation in soil-water system having different substrate concentrations. Int J Eng 2(12):1765–1772

    Google Scholar 

  • GuptaPK, YadavBK, HassanizadehSM (2017) Engineered bioremediation of LNAPL polluted soil-water resources under changing climatic conditions. In: Proceedings of international conference on modeling of environmental and water resources systems (ICMEWRS-2017), HBTU Kanpur, 24–26thMarch, 2017 (ISBN 978-93-85926-53-2)

    Google Scholar 

  • Gupta PK, Abhishek, Yadav BK (2018a) Impact of hydrocarbon pollutants on partially saturated soil media in batch system: morphological analysis using SEM techniques. In: Chapter 5, Water quality management; water science and technology library,. ISBN: 978-981-10-5794-6, vol 79. Springer, Singapore

    Google Scholar 

  • Gupta PK, Ranjan S, Kumar D (2018b) Groundwater pollution by emerging industrial pollutants and its remediation techniques. In: Chapter 2, Recent advances in environmental management, vol 1. CRC Press Taylor & Francis Group, Boca Raton,. ISBN 9780815383147

    Google Scholar 

  • GuptaPK, YadavB, YadavBK (2018c) Transport of LNAPL and biofilm growth in subsurface under dynamic groundwater conditions. In: C001723-Oral presentation in Japan Geoscience Union (JpGU) Chiba-city, Japan, May 20–24 2018

    Google Scholar 

  • Gupta PK, Yadav B, Yadav BK (2019) Assessment of LNAPL in subsurface under fluctuating groundwater table using 2D sand tank experiments. ASCE J Environ Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001560

    Article  CAS  Google Scholar 

  • Harter T, Ginn TR, Onsoy YS, Horwath WR (2004) Spatial variability and transport of nitrate in a deep alluvial vadose zone. Vadose Zone J 4:41–54

    Google Scholar 

  • Harter et al (2012) Addressing nitrate in California’s drinking water: with a focus on Tulare Lake Basin and Salinas Valley groundwater: report for the State Water Resources Control Board Report to the legislature. Center for Watershed Sciences, University of California, Davis

    Google Scholar 

  • He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H et al (2018) Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res 164:288–301

    Article  CAS  Google Scholar 

  • Hundal HS, Kumar R, Singh K, Singh D (2007) Occurrence and geochemistry of arsenic in groundwater of Punjab, Northwest India. Commun Soil Sci Plant Anal 38(17–18):2257–2277

    Article  CAS  Google Scholar 

  • Hussain I, Arif M, Hussain J (2012) Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India. Environ Monit Assess 184(8):5151–5158

    Article  CAS  Google Scholar 

  • IPCS (1984) Environmental health criteria 31: tetrachloroethylene. World Health Organization, Geneva. p. 18, 35

    Google Scholar 

  • Jasrotia S, Kansal A, Kishore VVN (2012) Application of solar energy for water supply and sanitation in Arsenic affected rural areas: a study for Kaudikasa village, India. J Clean Prod 37:389–393

    Article  Google Scholar 

  • Kanel SR, Al-Abed SR (2011) Influence of pH on the transport of nanoscale zinc oxide in saturated porous media. J Nanopart Res 13(9):4035–4047

    Article  CAS  Google Scholar 

  • Karthikeyan M, Elango KP (2009) Removal of fluoride from water using aluminium containing compounds. J Environ Sci 21:1513–1518

    Article  CAS  Google Scholar 

  • Keesari T, Mohokar HV, Sahoo BK, Mallesh G (2014) Assessment of environmental radioactive elements in groundwater in parts of Nalgonda district, Andhra Pradesh, South India using scintillation detection methods. J Radioanal Nucl Chem 302(3):1391–1398

    Article  CAS  Google Scholar 

  • Khijniak TV, Slobodkin AI, Coker V, Renshaw JC, Livens FR, Bonch-Osmolovskaya EA et al (2005) Reduction of uranium (VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. Appl Environ Microbiol 71(10):6423–6426

    Article  CAS  Google Scholar 

  • Kim SS, Han GS, Kim GN, Koo DS, Kim IG, Choi JW (2016) Advanced remediation of uranium-contaminated soil. J Environ Radioact 164:239–244

    Article  CAS  Google Scholar 

  • Kooperman GJ, Fowler MD, Hoffman FM, Koven CD, Lindsay K, Pritchard MS et al (2018) Plant physiological responses to rising CO2 modify simulated daily runoff intensity with implications for global-scale flood risk assessment. Geophys Res Lett 45(22):12–457

    Article  Google Scholar 

  • Kumar KR, Sahai AK, Krishna Kumar K et al (2006) High resolution climate change scenarios for India for the 21st century. Curr Sci 90:334–345

    Google Scholar 

  • Kumar A, Usha N, Sawant PD, Tripathi RM, Raj SS, Mishra M et al (2011) Risk assessment for natural uranium in subsurface water of Punjab state, India. Hum Ecol Risk Assess 17(2):381–393

    Article  CAS  Google Scholar 

  • Kumari B, ∗Gupta PK, Kumar D (2019) In-situ observation and nitrate-N load assessment in Madhubani District, Bihar, India. J Geol Soc India (Springer) 93(1):113–118. https://doi.org/10.1007/s12594-019-1130-z. (∗Corresponding author)

    Article  CAS  Google Scholar 

  • Kundu N, Panigrahi M, Tripathy S, Munshi S, Powell M, Hart B (2001) Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa, India. Environ Geol 41(3–4):451–460

    CAS  Google Scholar 

  • Lapworth DJ, Krishan G, MacDonald AM, Rao MS (2017) Groundwater quality in the alluvial aquifer system of northwest India: new evidence of the extent of anthropogenic and geogenic contamination. Sci Total Environ 599:1433–1444

    Article  CAS  Google Scholar 

  • Lerner DN, Harris B (2009) The relationship between land use and groundwater re-sources and quality. Land Use Policy 26(1):265–273

    Article  Google Scholar 

  • Ling L, Pan B, Zhang WX (2015) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se (IV). Water Res 71:274–281

    Article  CAS  Google Scholar 

  • MacDonald AM, Bonsor HC, Ahmed KM, Burgess WG, Basharat M, Calow RC et al (2016) Groundwater quality and depletion in the indo-Gangetic Basin mapped from in situ observations. Nat Geosci 9(10):762–766

    Article  CAS  Google Scholar 

  • Madhavan N, Subramanian V (2002) Fluoride in fractionated soil samples of Ajmer district, Rajasthan. J Environ Monit 4(6):821–822

    Article  CAS  Google Scholar 

  • Malekzadeh F, Farazmand A, Ghafourian H, Shahamat M, Levin M, Colwell RR (2002) Uranium accumulation by a bacterium isolated from electroplating effluent. World J Microbiol Biotechnol 18(4):295–302

    Article  CAS  Google Scholar 

  • Malik RPS (2000) Agriculture and water quality in India towards sustainable management. Water Rep, FAO 21:73–85

    Google Scholar 

  • Mall RK, Gupta A, Singh R, Dingh RS, Rathore LS (2006) Water resources and climate change: an Indian perspective. Curr Sci 90:1610–1625

    Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5):650–663

    Article  CAS  Google Scholar 

  • Massuel S, Perrin J, Mascre C, Mohamed W et al (2014) Managed aquifer recharge in South India: what to expect from small percolation tanks in hard rock? J Hydrol 512:157–167

    Article  Google Scholar 

  • Meenakshi RC (2006) Fluoride in drinking water and its removal. J Hazard Mater B137:456–463

    Article  CAS  Google Scholar 

  • Mihajlov I et al (2016) Recharge of low-arsenic aquifers tapped by community wells in Araihazar, Bangladesh, inferred from environmental isotopes. Water Resour Res 52(5):3324–3349

    Article  CAS  Google Scholar 

  • Mishra V, Shah R, Thrasher B (2014) Soil moisture droughts under the retrospective and projected climate in India. J Hydrometeorol 15(6):2267–2292

    Article  Google Scholar 

  • Muralidharan D, Rangarajan R, Shankar BK (2011) Vicious cycle of fluoride in semi-arid India—a health concern. Curr Sci 100(5):638–640

    CAS  Google Scholar 

  • Mustapha IH, Gupta PK, Yadav BK, van Bruggen JJA, Lens PNL (2018) Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.04.036

    Article  CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • NITI Aayog, Government of India (2015) Raising agricultural productivity and making farming remunerative for farmers, (An Occasional Paper)

    Google Scholar 

  • Noubactep C, Meinrath G, Merkel BJ (2005) Investigating the mechanism of uranium removal by zerovalent iron. Environ Chem 2(3):235–242

    Article  CAS  Google Scholar 

  • Olea RA, Raju NJ, Egozcue JJ, Pawlowsky-Glahn V, Singh S (2018) Advancements in hydrochemistry mapping: methods and application to groundwater arsenic and iron concentrations in Varanasi, Uttar Pradesh, India. Stoch Environ Res Risk Assess 32(1):241–259

    Article  Google Scholar 

  • Patnaik R, Lahiri S, Chahar V, Naskar N, Sharma PK, Avhad DK et al (2016) Study of uranium mobilization from Himalayan Siwaliks to the Malwa region of Punjab state in India. J Radioanal Nucl Chem 308(3):913–918

    Article  CAS  Google Scholar 

  • Phillips DH, Gu B, Watson DB, Parmele CS (2008) Uranium removal from contaminated groundwater by synthetic resins. Water Res 42(1–2):260–268

    Article  CAS  Google Scholar 

  • Rana A, Bhardwaj SK, Thakur M, Verma S (2016) Assess-ment of heavy metals in surface and ground water sources under different land uses in mid hills of Himachal Pradesh. Int J Bioresource Stress Manage 7(3):461–465

    Article  Google Scholar 

  • Ranjan RK, Ramanathan AL, Parthasarathy P, Kumar A (2013) Hydrochemical characteristics of groundwater in the plains of Phalgu River in Gaya, Bihar, India. Arab J Geosci 6(9):3257–3267

    Article  CAS  Google Scholar 

  • Ranjan S, Gupta PK, Yadav BK (2018) Application of nano-materials in subsurface remediation techniques – challenges and future prospects. In: Chapter 6, Recent advances in environmental management, ISBN 9780815383147, vol 1. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Rao NS, Devadas DJ (2003) Fluoride incidence in groundwater in an area of Peninsular India. Environ Geol 45(2):243–251

    Article  CAS  Google Scholar 

  • Robertson, Cherry (1995) In situ denitrification of septic-system nitrate using reactive porous media barriers: field trials. Ground Water 33:99–111

    Article  CAS  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999

    Article  CAS  Google Scholar 

  • Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation-A critical review. Chemosphere 158:37–49

    Article  CAS  Google Scholar 

  • Sarkar S, Blaney LM, Gupta A, Ghosh D, SenGupta AK (2008) Arsenic removal from groundwater and its safe containment in a rural environment: validation of a sustainable approach. Environ Sci Technol 42(12):4268–4273

    Article  CAS  Google Scholar 

  • Sarkar S, Greenleaf JE, Gupta A, Uy D, SenGupta AK (2012) Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress. Annu Rev Chem Biomol Eng 3:497–517

    Article  CAS  Google Scholar 

  • Shah BA (2017) Groundwater arsenic contamination from parts of the Ghaghara Basin, India: influence of fluvial geomorphology and Quaternary morphostratigraphy. Appl Water Sci 7(5):2587–2595

    Article  CAS  Google Scholar 

  • Sharma S, Kaur J, Nagpal AK, Kaur I (2016) Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its environs. Environ Monit Assess 188(9):506

    Article  CAS  Google Scholar 

  • Shankar S, Shanker U, Shikha (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J. https://doi.org/10.1155/2014/304524

    Article  CAS  Google Scholar 

  • Sheng G, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang X et al (2016) Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon 99:123–130

    Article  CAS  Google Scholar 

  • Siddiqui SI, Chaudhry SA (2017) Iron oxide and its modified forms as an adsorbent for arsenic removal: a comprehensive recent advancement. Process Saf Environ Prot 111:592–626

    Article  CAS  Google Scholar 

  • Simunek J, Jarvis NJ, Van Genuchten MT, Gardenas A (2003) Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrol 272:14–35

    Article  Google Scholar 

  • Singh H, Singh J, Singh S, Bajwa BS (2009a) Uranium concentration in drinking water samples using the SSNTDs. Indian J Phys 83(7):1039–1044

    Article  CAS  Google Scholar 

  • Singh V, Nickson RT, Chauhan D, Iyengar L, Sankararamakrishnan N (2009b) Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere 75:83–91

    Article  CAS  Google Scholar 

  • Singhal VK, Anurag GR, Kumar T (2018) Arsenic concentration in drinking and irrigation water of Ambagarh Chowki Block, Rajnandgaon (Chhattisgarh). Int J Chem Stud 6(2):733–739

    Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20(5):989–1016

    Article  CAS  Google Scholar 

  • Soga K, Page JWE, Illangasekare TH (2004) A review of NAPL source zone remediation efficiency and the mass flux approach. J Hazard Mater 110(1–3):13–27. https://doi.org/10.1016/j.jhazmat.2004.02.034

    Article  CAS  Google Scholar 

  • Srivastava A, Lahiri S, Maiti M, Knolle F, Hoyler F, Scherer UW, Schnug EW (2014) Study of naturally occurring radioactive material (NORM) in top soil of Punjab State from the North Western part of India. J Radioanal Nucl Chem 302(2):1049–1052

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. John Wiley & SonsInc, New York

    Google Scholar 

  • Sulaymon A, Gzar HA (2011) Experimental investigation and numerical modelling of light non-aqueous phase liquid dissolution and transport in a saturated zone of the soil. J Hazard Mater 186:1601–1614

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658. https://doi.org/10.1016/S0925-8574(02)00026-5

    Article  Google Scholar 

  • Suthar S, Bishnoi P, Singh S, Mutiyar PK, Nema AK, Patil NS (2009) Nitrate contamination in groundwater of some rural areas of Rajasthan, India. J Hazard Mater 171(1–3):189–199

    Article  CAS  Google Scholar 

  • Symonds RB, Rose WI, Reed MH (1988) Contribution of C1-and F-bearing gases to the atmosphere by volcanoes. Nature 334(6181):415

    Article  CAS  Google Scholar 

  • Thivya C, Chidambaram S, Tirumalesh K, Prasanna MV, Thilagavathi R, Nepolian M (2014) Occurrence of the radionuclides in groundwater of crystalline hard rock regions of central Tamil Nadu, India. J Radioanal Nucl Chem 302(3):1349–1355

    Article  CAS  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36(18):1–5

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Chang 2:587–595

    Article  Google Scholar 

  • United Nations Children’s Fund UNICEF (2008) The state of the world’s children 2009: maternal and newborn health, vol 9. UNICEF, New York

    Google Scholar 

  • USEPA (1990) Estimated national occurrence and exposure to nitrate and nitrite in public drinking water supplies. United States Environmental Protection Agency, Office of Drinking Water, Washington, DC

    Google Scholar 

  • Vahter M (2008) Health effects of early life exposure to arsenic. Basic ClinPharmacol Toxicol 102(2):204–211

    Article  CAS  Google Scholar 

  • Vikas C, Kushwaha RK, Pandit MK (2009) Hydrochemical status of groundwater in district Ajmer (NW India) with reference to fluoride distribution. J Geol Soc India 73(6):773–784

    Article  CAS  Google Scholar 

  • Virk HS (2018) Selenium contamination of groundwater of Majha Belt of Punjab (India). Res RevJ Toxicol 8(2):1–7

    Google Scholar 

  • Vogel T, Brezina J, Dohnal M, Dusek J (2010) Physical and numerical coupling in dual continuum modeling of preferential flow. Vadose Zone J 9:260–267

    Article  Google Scholar 

  • Wang (2008) Modeling the spatial distribution of nitrogen leaching from dairy farm land. Vaodse Zone J 7(2):439–452

    Article  CAS  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva

    Google Scholar 

  • Winkel LH, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2011) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46(2):571–579

    Article  CAS  Google Scholar 

  • Yadav BK, Hassanizadeh SM (2011) An overview of biodegradation of LNAPLs in coastal (semi)-arid environment. Water Air Soil Pollut 220:225–239

    Article  CAS  Google Scholar 

  • Zhou Y, Tang L, Yang G, Zeng G, Deng Y, Huang B et al (2016) Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2, 4-dichlorophenol. Cat Sci Technol 6(6):1930–1939

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors of this book chapter thank Remwasol Remediation Technologies Pvt. Ltd. (www.remwasol.com) for the support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P.K., Yadav, B., Kumar, A., Singh, R.P. (2020). India’s Major Subsurface Pollutants Under Future Climatic Scenarios: Challenges and Remedial Solutions. In: Singh, P., Singh, R., Srivastava, V. (eds) Contemporary Environmental Issues and Challenges in Era of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-32-9595-7_6

Download citation

Publish with us

Policies and ethics