Skip to main content

Impact of Phenolics on Drought Stress and Expression of Phenylpropanoid Pathway Genes

  • Chapter
  • First Online:
Plant Phenolics in Abiotic Stress Management

Abstract

Water shortage in plant is the major environmental stress affecting plant productivity. In crops, losses in productivity induced by drought are expected to outweigh losses from all other sources, owing to both the intensity and time period of the stress. The buildup of phenolic compounds is critical for plants to resist the harmful effects of drought stress. Transcriptomic and metabolomic investigations demonstrated augmentation and stimulation in the manufacture and accumulation of flavonoids in plants, as well as improved drought tolerance. Various researchers have detected an increase in total phenolic contents and associated chemicals with drought stress; yet, it has also been confirmed that drought stress reduces plant biomass. The key factor leading to variance in total phenolic content of plants during drought stress has been identified as genotype. Drought stress can also change the biosynthetic cycles of flavonoid and phenolic acid (which protect plants with their antioxidant properties) pathway, resulting in greater increase of these chemicals, which cause negative impacts. Flavonoid accumulation in the cytoplasm may effectively detoxify damaging H2O2 molecules produced by drought stress, and flavonoids are oxidized with the help of reconversion by ascorbic acid mediation and form primary metabolites. The fundamental cause of drought-induced phenolic compound concentration is the modification and control to the expression of the gene and production of important enzymes for phenylpropanoid biosynthetic pathway, which cause the enhancement of phenolic compound production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14:919–937

    Article  CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  Google Scholar 

  • Al Hassan M, Fuertes MM, Sanchez FJR, Vicente O, Boscaiu M (2015) Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not Bot HortiAgrobot Cluj-Na 43:1

    Article  Google Scholar 

  • Amarowicz R, Weidner S (2009) Biological activity of grapevine phenolic compounds. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. Springer, New York, pp 389–405. https://doi.org/10.1007/978-90-481-2305-6_14

    Chapter  Google Scholar 

  • Andersen CP (2003) Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228. https://doi.org/10.1046/j.1469-8137.2003.00674.x

    Article  CAS  Google Scholar 

  • Andre CM, Schafleitner R, Legay S, Lefevre I, Aliaga CAA, Nomberto G, Hoffmann L, Hausman JF, Larondelle Y, Evers D (2009) Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 70:1107–1116

    Article  CAS  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Ansari WA, Atri N, Ahmad J, Qureshi MI, Singh B, Kumar R, Rai V, Pandey S (2019) Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PLoS One 14(9):e0222647

    Article  CAS  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  Google Scholar 

  • Bahler BD, Steffen KL, Orzolek MD (1991) Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. Hortscience 26:736

    Google Scholar 

  • Ballizany WL, Hofmann RV, Jahufer MZZ, Barrett BB (2012) Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Funct Plant Biol 39:167–177

    Article  CAS  Google Scholar 

  • Bartels D, Souer E (2004) Molecular responses of higher plants to dehydration. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin, pp 9–38

    Google Scholar 

  • Battaglia M, Solorzano RM, Hernandez M, Cuellar-Ortiz S, Garcia-Gomez B, Marquez J, Covarrubias AA (2007) Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta 225:1121–1133

    Article  CAS  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crop Res 97(2–3):248–253

    Article  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735. https://doi.org/10.1016/j.phytochem.2007.06.012

    Article  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL et al (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin, pp 263–324

    Chapter  Google Scholar 

  • Brodersen CR, Roddy AB, Wason JW, McElrone AJ (2019) Functional status of xylem through time. Annu Rev Plant Biol 70:407–433

    Article  CAS  Google Scholar 

  • Bujor OC, Talmaciu IA, Volf I, Popa VI (2015) Biorefining to recover aromatic compounds with biological properties. TAPPI J 14:187–193

    Article  CAS  Google Scholar 

  • Cao G, Sofic E, Prior RL (1996) Antioxidant capacity of tea and common vegetables. J Agric Food Chem 44:3426–3431

    Article  CAS  Google Scholar 

  • Castellarin SD, Pfeiffe A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 30(11):1381–1399

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cherit-Hacid F, Derridij A, Moulti-Mati FA, Mati AB (2015) Drought stress effect on some biochemical and physiological parameters; accumulation on total polyphenols and flavonoids in leaves of two provenance seedling Pistacia lentiscus. Int J Res Appl Nat Soc Sci 3(9):127–138

    Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20. https://doi.org/10.1016/j.plaphy.2013.05.009

    Article  CAS  Google Scholar 

  • Chiappero J, del Rosario Cappellari L, Alderete LGS, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crop Prod 139:111553

    Article  CAS  Google Scholar 

  • Cohen I, Zandalinas SI, Huck C, Fritschi FB, Mittler R (2021) Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plant 171:66–76

    Article  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  CAS  Google Scholar 

  • De Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum Brasiliense Choisy. Plant Physiol Biochem 43(3):241–248

    Article  Google Scholar 

  • Del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9:289–300

    Article  Google Scholar 

  • Delitala LF, Gessa C, Solinas V (1986) Water stress and flexibility of phenolic metabolism in Thymus capitatus. Fitoterapia 57(6):401–408

    CAS  Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U (2009) Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plant 31:1129–1138

    Article  CAS  Google Scholar 

  • Devincentis AJ (2020) Scales of sustainable agricultural water management. PhD thesis, University of California, Davis

    Google Scholar 

  • Diatta AA, Thomason WE, Abaye O, Thompson TL, Battaglia ML, Vaughan LJ, Lo M, Leme JFDC (2020a) Assessment of nitrogen fixation by mungbean genotypes in different soil textures using 15N natural abundance method. J Soil Sci Plant Nutr 20:2230–2240. https://doi.org/10.1007/s42729-020-00290-2

    Article  CAS  Google Scholar 

  • Diatta AA, Fike JH, Battaglia ML, Galbraith J, Baig MB (2020b) Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arab J Geosci 13:595

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. https://doi.org/10.2307/3870059

    Article  CAS  Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Piceaasperata. J Exp Bot 58:3025–3036

    Article  CAS  Google Scholar 

  • Franca SC, Roberto PG, Marins MA, Puga RD, Rodrigeuz A, Pereira JO (2001) Biosynthesis of secondary metabolites in sugarcane. Genet Mol Biol 24:243–250

    Article  CAS  Google Scholar 

  • Galieni A, Di Mattia C, De Gregorio M, Speca S, Mastrocola D, Pisante M, Stagnari F (2015) Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci Hortic 187:93–101

    Article  CAS  Google Scholar 

  • García-Calderón M, Pons-Ferrer T, Mrazova A, Pal’ove-Balang P, Vilkova M, Pérez-Delgado CM, Vega JM, Eliášová A, Repčák M, Márquez AJ, Betti M (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6:760

    Article  Google Scholar 

  • Gharibi S, Tabatabaei BES, Saeidi G, Goli SAH (2016) Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl Biochem Biotechnol 178(4):796–809

    Article  CAS  Google Scholar 

  • Gharibi S, Sayed Tabatabaei BE, Saeidi G, Talebi M, Matkowski A (2019) The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 162:90–98. https://doi.org/10.1016/j.phytochem.2019.03.004

    Article  CAS  Google Scholar 

  • Gnanasekaran N, Kalavathy S (2017) Drought stress signal promote the synthesis of more reduced phenolic compounds (chloroform insoluble fraction) in Tridax procumbens. Free Radic Antioxid 7(1):128–136

    Article  Google Scholar 

  • Gray DE, Pallardy SG, Garrett HE, Rottinghaus G (2003) Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots. Planta Med 69(1):50–55

    Article  CAS  Google Scholar 

  • Griesser M, Weingart G, Schoedl-Hummel K, Neumann N, Becker M, Varmuza K, Liebner F, Schuhmacher R, Forneck A (2015) Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). Plant Physiol Biochem 88:17–26

    Article  CAS  Google Scholar 

  • Gumul D, Korus J, Achremowicz B (2007) The influence of extrusion on the content of polyphenols and antioxidant/antiradical activity of rye grains (Secale cereal L.). Acta Sci Pol 6:103–111

    CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:183–236

    Article  Google Scholar 

  • Hernaéndez I, Alegre L, Munné-Bosch S (2006) Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants. Phytochemistry 67:1120–1126

    Article  Google Scholar 

  • Hernandez I, Alegre L, Munne-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    Article  CAS  Google Scholar 

  • Hodaei M, Rahimmalek M, Arzani A, Talebi M (2018) The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind Crop Prod 120:295–304

    Article  CAS  Google Scholar 

  • Huang X, Yao J, Zhao Y, Xie D, Jiang X, Xu Z (2016) Efficient rutin and quercetin biosynthesis through flavonoids-related gene expression in Fagopyrum tataricum Gaertn. hairy root cultures with UV-B irradiation. Front Plant Sci 7:63

    Google Scholar 

  • Jaafar HZ, Ibrahim MH, Mohamad Fakri NF (2012) Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules 17:7305–7322

    Article  CAS  Google Scholar 

  • Jwa NS, Agrawal GK, Tomogami S, Yonekura M, Han O, Iwahashi H, Rakwal R (2006) Role of defence/stress-related marker genes, proteins, and secondary metabolites in defining rice self defence mechanisms. Plant Physiol Biochem 44:261–273

    Article  CAS  Google Scholar 

  • Kaur L, Zhawar VK (2015) Phenolic parameters under exogenous ABA, water stress, salt stress in two wheat cultivars varying in drought tolerance. Indian J Plant Physiol 20(2):151–156

    Article  Google Scholar 

  • Khalil N, Fekry M, Bishr M, El-Zalabani S, Salama O (2018) Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. Plant Physiol Biochem 123:65–74

    Article  CAS  Google Scholar 

  • Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC (2003) Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J Agric Food Chem 51:3973–3976. https://doi.org/10.1021/jf030096r

    Article  CAS  Google Scholar 

  • Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S, Chul Chang S (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol Plant 121(2):182–186

    Article  CAS  Google Scholar 

  • Kramer PJ (1983) Water relations of plants. Academic, New York

    Google Scholar 

  • Kubota N, Mimura H, Shimamura K (1988) The effects of drought and flooding on the phenolic compounds in peach fruits. Sci Rep Fac Agric Okayama Univ 171:17–21

    Google Scholar 

  • Kumar V, Sharma A, Kohli SK, Bali S, Sharma M, Kumar R, Bhardwaj R, Thukral AK (2019) Differential distribution of polyphenols in plants using multivariate techniques. Biotechnol Res Innov 3:1–21. https://doi.org/10.1016/j.biori.2019.03.001

    Article  CAS  Google Scholar 

  • Kumar S, Bhushan B, Wakchaure GC, Meena KK, Kumar M, Meena NL, Rane J (2020a) Plant phenolics under water-deficit conditions: biosynthesis, accumulation, and physiological roles in water stress alleviation. In: Lone R, et al. (eds) Plant tolerance to environmental stress: role of phytoprotectants. Plant Phenolics in sustainable agriculture, vol. 1, pp 451–465. https://doi.org/10.1007/978-981-15-4890-1_1

  • Kumar S, Bhushan B, Wakchaure GC, Meena KK, Kumar M, Meena NL, Rane J (2020b) Plant phenolics under water-deficit conditions: biosynthesis, accumulation, and physiological roles in water stress alleviation. In: Lone R, et al (eds) Plant tolerance to environmental stress: role of phytoprotectants. Plant phenolics in sustainable agriculture, vol. 1, pp 451–465. https://doi.org/10.1007/978-981-15-4890-1_1

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat KG, Mérillon JM (eds) Natural products. Springer, Berlin. https://doi.org/10.1007/978-3-642-22144-6_57

    Chapter  Google Scholar 

  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VMT, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65:54–62. https://doi.org/10.1016/j.envexpbot.2008.09.002

    Article  CAS  Google Scholar 

  • Li H, Yao W, Fu Y, Li S, Guo Q (2015) De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. PLoS One 10:111054

    Article  Google Scholar 

  • Li M, Li Y, Zhang W, Li S, Gao Y, Ai X, Zhang D, Liu B, Li Q (2018) Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Anal Biochem 559:71–85. https://doi.org/10.1016/j.ab.2018.08.020

    Article  CAS  Google Scholar 

  • Liu M, Li X, Liu Y, Cao B (2013) Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol Biochem 73:161–167

    Article  CAS  Google Scholar 

  • Ma D, Sun D, Wang C, Li Y, Guo T (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66. https://doi.org/10.1016/j.plaphy.2014.03.024

    Article  CAS  Google Scholar 

  • Malik JA, Bhadauria M, Lone R, Hajam YA (2020) Exploitation of plant phenolics in animal farming. In: Lone R, et al (ed) Plant phenolics in sustainable agriculture, vol. 1, p 69–89. https://doi.org/10.1007/978-981-15-4890-1_1

  • Manukyan A (2011) Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: I. drought stress. Med Aromat Plant Sci Biotechnol 5:119–125

    Google Scholar 

  • Mattson MJ, Haack RA (1987) The role of drought stress in provoking outbreaks of phytophagous insects. In: Barbosa P, Shultz JC (eds) Insect outbreaks. Academic, San Diego, pp 365–407

    Chapter  Google Scholar 

  • Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Plant signaling molecules. In: Role and regulation of plants phenolics in abiotic stress tolerance: an overview. Elsevier, Amsterdam, pp 157–168

    Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77(3):367–379. https://doi.org/10.1111/tpj.12388

    Article  CAS  Google Scholar 

  • Nichols SN, Hofmann RW, Williams WM (2015) Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environ Exp Bot 119:40–47. https://doi.org/10.1016/j.envexpbot.2015.05.014

    Article  CAS  Google Scholar 

  • Nogués S, Allen DJ, Morison JIL, Baker NR (1998) UltravioletB radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117(1):173–181

    Article  Google Scholar 

  • Nowak M, Manderscheid R, Weigel HJ, Kleinwächter M, Selmar D (2010) Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Bot Food Qual 83:133–136

    CAS  Google Scholar 

  • O’Connell E (2017) Towards adaptation of water resource systems to climatic and socio-economic change. Water Resour Manag 31:2965–2984

    Article  Google Scholar 

  • Oki T, Masuda M, Kobayashi M, Nishiba Y, Furuta S, Suda L, Sato T (2002) Polymeric procyanidins as radical-scavenging components in red-hulled rice. J Agric Food Chem 50(26):7524–7529

    Article  CAS  Google Scholar 

  • Okorie VO, Mphambukeli TN, Amusan SO (2019) Exploring the political economy of water and food security nexus in BRICS. Afr Insight 48:21–38

    Google Scholar 

  • Oszmanski J (1995) Polyphenols as antioxidants in food. Przem Spo 3:94–96

    Google Scholar 

  • Palliotti A, Gatti M, Poni S (2011) Early leaf removal to improve vineyard efficiency: gas exchange, source-to-sink balance, and reserve storage responses. Am J Enol Vitic 62(2):219–228. https://doi.org/10.5344/ajev.2011.10094

    Article  CAS  Google Scholar 

  • Passioura JB, Angus JF (2010) Improving productivity of crops in water-limited environments. In: Advances in agronomy, vol 106. Academic, Cambridge, pp 37–75

    Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  Google Scholar 

  • Perin EC, Da Silva Messias R, Borowski JM, Crizel RL, Schott IB, Carvalho IR, Rombaldi CV, Galli V (2019) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 271:516–526. https://doi.org/10.1016/j.foodchem.2018.07.213

    Article  CAS  Google Scholar 

  • Pirbalouti AG, Malekpoor F, Salimi A, Golparvar A (2017) Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimumciliatum and Ocimumbasilicum) under reduced irrigation. Sci Hortic 217:114–122

    Article  Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Article  Google Scholar 

  • Rampino P, Pataleo S, Gererdi C, Mita G, Perrotta C (2006) Drought response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2018) Differential responses of phenolic compounds of Brassica napus under drought stress. Iran J Plant Physiol 8(3):2417–2425

    Google Scholar 

  • Sanchez-Rodriguez E, Moreno DA, Ferreres F, Rubio-WilhelmiMdel M, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729. https://doi.org/10.1016/j.phytochem.2011.02.011

    Article  CAS  Google Scholar 

  • Schoeneweiss DF (1975) Predisposition, stress, and plant disease. Annu Rev Phytopathol 13:193–211

    Article  Google Scholar 

  • Sgro CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29(2):131–151

    Article  CAS  Google Scholar 

  • Silva G de LS, Silva AM de A, Nóbrega GH da, Azevedo SA, Pereira Filho JM, Alcalde CR (2010) Intake, digestibility and milk production of dairy goats fed with different fat sources. Acta Sci Anim Sci Maringa 32(1):47–53

    CAS  Google Scholar 

  • Silva FLB, Vieira LGE, Ribas AF, Moro AL, Neris DM, Pacheco AC (2018) Proline accumulation induces the production of total phenolics in transgenic tobacco plants under water deficit without increasing the G6PDH activity. Theor Exp Plant Physiol 30(3):251–260

    Article  CAS  Google Scholar 

  • Solecka D (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 19:257–268

    Article  CAS  Google Scholar 

  • Somerville C, Briscoe J (2001) Genetic engineering and water. Science 292:2217

    Article  CAS  Google Scholar 

  • Subba Rao MV, Muralikrishna G (2002) Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana, Indaf-15). J Agric Food Chem 50:889–892

    Article  CAS  Google Scholar 

  • Tanase C, Bujor OC, Popa VI (2019) Phenolic natural compounds and their influence on physiological processes in plants. In: Watson RR (ed) Polyphenols in plants, 2nd edn. Academic, Cambridge, pp 45–58

    Chapter  Google Scholar 

  • Teixeira J, Gaspar A, Manuela-Garrido E, Garrido J, Borges F (2013) Hydroxycinnamic acid antioxidants: an electrochemical overview. Biomed Res Int 2013:251754

    Article  Google Scholar 

  • Telesinski A, Nowak J, Smolik B, Dubowska A, Skrzypiec N (2008) Effect of soil salinity on activity of antioxidant enzymes and content of ascorbic acid and phenols in bean (Phaseolus vulgaris L.) plants. J Elem 13:401–409

    Google Scholar 

  • Varela MC, Arslan I, Reginato MA, Cenzano AM, Luna MV (2016) Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant Physiol Biochem 104:81–91

    Article  CAS  Google Scholar 

  • Verdoy D, Lucas MM, Manrique E, Covarrubias AA, De Felipe R, Pueyo JJ (2004) Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus vulgaris). Plant Cell Environ 27:757–767

    Article  CAS  Google Scholar 

  • Wagay NA, Lone R, Rafiq S, Bashir SU (2020) Phenolics: a game changer in the life cycle of plants. In: Lone R, et al. (eds) Plant phenolics in sustainable agriculture, vol. 1, p 241–277. https://doi.org/10.1007/978-981-15-4890-1_1

  • Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17:1706

    Article  Google Scholar 

  • Waring GL, Cobb NS (1992) The impact of plant stress on herbivore population dynamics. In: Bernays L (ed) Insect-plant interactions, vol 4. CRC Press, Boca Raton, pp 167–226

    Google Scholar 

  • Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73:73–83

    Article  Google Scholar 

  • Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of Chrysanthemum under dehydration stress. BMC Genomics 14(1):662

    Article  CAS  Google Scholar 

  • Yan K, Cui M, Zhao S, Chen X, Tang X (2016) Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica thunb.). Front Plant Sci 7:1563

    Article  Google Scholar 

  • Yang H, Huntingford C, Wiltshire A, Sitch S, Mercado L (2019) Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Environ Res Lett 14:124075

    Article  CAS  Google Scholar 

  • Yin J, Gentine P, Zhou S, Sullivan SC, Wang R, Zhang Y, Guo S (2018) Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun 9:1–10

    Article  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186

    Article  CAS  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49(11):5165–5170

    Article  CAS  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Pereira, abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  Google Scholar 

  • Zhu X, Gong H, Chen G, Wang S, Zhang C (2005) Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ 62:1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagay, N.A., Rafiq, S., Khan, A., Kaloo, Z.A., Malik, A.R., Pulate, P.V. (2023). Impact of Phenolics on Drought Stress and Expression of Phenylpropanoid Pathway Genes. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Abiotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-6426-8_13

Download citation

Publish with us

Policies and ethics