Skip to main content
Log in

Colonic fermentation: metabolic and clinical implications

  • Overview
  • Published:
The clinical investigator Aims and scope Submit manuscript

Abstract

Colonic SCFA formation from fermentable carbohydrate is important for the maintenance of morphologic and functional integrity of the colonic epithelium. Carbohydrate-induced diarrhea occurs when the amount of carbohydrate entering the colon exceeds its fermentation capacity. Deficient availability or utilization of SCFA, mainly of n-butyrate, is the cause of diversion colitis and may play important roles in colonic carcinogenesis, in starvation and enterotoxigenic diarrhea, and in idiopathic UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NSP:

nonstarch polysaccharide

SCFA:

shortchain fatty acids

SRB:

sulfate-reducing bacteria

UC:

idiopathic ulcerative colitis

References

  1. Bahrdt H, McLean S (1914) Untersuchungen ueber die Pathogenese der Verdauungsstoerungen im Saeuglingsalter. VIII. Mitteilung: Ueber die fluechtigen Fettsaeuren im Darm gesunder und magendarmkranker Saeuglinge und ihre Beziehung zu den Stoffwechselstoerungen. Z Kinderheilk 11: 143–178

    Google Scholar 

  2. Bond JH, Jr, Levitt ML (1972) Use of pulmonary hydrogen (H2) measurements to quantitate carbohydrate absorption. Study of partially gastrectomized patients. J Clin Invest 51: 1219–1225

    Google Scholar 

  3. Breuer RI, Buto SK, Christ ML, Bean J, Vernia P, Paoluzi P, Di Paolo MC, Caprilli R (1991) Rectal irrigation with shortchain fatty acids for distal ulcerative colitis. Dig Dis Sci 36: 185–187

    Google Scholar 

  4. Chapman MAS, Grahn MF, Boyle MA, Hutton M, Rogers J, Williams NS (1994) Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut 35: 73–76

    Google Scholar 

  5. Christl SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Production, metabolism and excretion of hydrogen in the large intestine. Gastroenterology 102: 1269–1277

    Google Scholar 

  6. Christl SU, Gibson GR, Murgatroyd PR, Scheppach W, Cummings JH (1993) Impaired hydrogen metabolism in pneumatosis cystoides intestinalis. Gastroenterology 104: 392–397

    Google Scholar 

  7. Clausen MR, Mortensen PB (1994) Kinetic studies on the metabolism of short-chain fatty acids and glucose by isolated rat colonocytes. Gastroenterology 106: 423–432

    Google Scholar 

  8. Clausen MR, Bonnén H, Tvede M, Mortensen PB (1991) Colonic fermentation to short-chain fatty acids is decreased in antibiotic-associated diarrhea. Gastroenterology 101: 1497–1504

    Google Scholar 

  9. Cummings JH, Englyst HN (1991) Measurement of starch fermentation in the human large intestine. Can J Physiol Pharmacol 69: 121–129

    Google Scholar 

  10. Cummings JH, Bingham SA, Heaton KW, Eastwood MA (1992) Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 103: 1783–1789

    Google Scholar 

  11. Cummings JH, Pomare EW, Branch WJ, Naylor CPE, MacFarlane GT (1987) Short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221–1227

    Google Scholar 

  12. Diener M, Helmle-Kolb C, Murer H, Scharrer E (1993) Effect of short-chain fatty acids on cell volume and intracellular pH in rat distal colon. Pflügers Arch 424: 216–223

    Google Scholar 

  13. Florin T, Neale G, Gibson JR, Christl SU, Cummings JH (1991) Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32: 766–773

    Google Scholar 

  14. Frankel WL, Zhang W, Singh A, Klurfeld DM, Sakata T, Modlin I, Rombeau JL (1994) Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology 106: 375–380

    Google Scholar 

  15. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37: 121–128

    Google Scholar 

  16. Grove EW, Olmsted WJ, Koenig K (1929) The effect of diet and catharsis on the lower volatile fatty acids in the stool of normal men. J Biol Chem 85: 127–136

    Google Scholar 

  17. Hammer HF, Fine KD, Santa Ana CA, Porter JL, Schiller LR, Fordtran JS (1990) Carbohydrate malabsorption. Its measurement and its contribution to diarrhea. J Clin Invest 86: 1936–1944

    Google Scholar 

  18. Harig JM, Soergel KH (1994) Diversion colitis. In: Targan SR, Shanahan F (eds) Inflammatory bowel disease. From bench to bedside. Williams and Wilkins, Baltimore, pp 734–742

    Google Scholar 

  19. Harig JM, Soergel KH, Komorowski RA, Wood CM (1989) Treatment of diversion colits with short-chain fatty acid irrigation. N Engl J Med 320: 23–28

    Google Scholar 

  20. Henning SJ, Hird FJR (1972) Transport of acetate and butyrate in the hind-gut of rabbits. Biochem J 130: 791–796

    Google Scholar 

  21. Kamath PS, Phillips SF, Zinsmeister AR (1988) Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology 95: 1496–1502

    Google Scholar 

  22. Kruh J, Defer N, Tichonicky L (1991) Molecular and cellular effects of sodium butyrate. In: Short-chain fatty acids: metabolism and clinical importance. Report of the Tenth Ross Conference on Medical Research. Ross Laboratories, Columbus

    Google Scholar 

  23. McHan F, Shotts EB (1992) Effect of feeding selected shortchain fatty acids on the in vivo attachment of Salmonella typhimurium in chick ceca. Avian Dis 36: 139–142

    Google Scholar 

  24. McIntyre A, Gibson PR, Young GP (1993) Butyrate production from dietary fiber and protection against large bowel cancer in a rat model. Gut 34: 386–391

    Google Scholar 

  25. McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39: 338–342

    Google Scholar 

  26. Mortensen FV, Nielsen H, Mulvany MJ, Nessov I (1990) Short-chain fatty acids dilate isolated human colonic resistance arteries. Gut 31: 1391–1394

    Google Scholar 

  27. Ramakrishna BS, Mathan VI (1993) Short-chain fatty acids and colonic dysfunction in cholera. Gastroenterology 104: A273 (abstract)

    Google Scholar 

  28. Ramakrishna BS, Nance SH, Roberts-Thomson IC, Roediger WEW (1990) The effects of enterotoxins and short-chain fatty acids on water and electrolyte fluxes in ileal and colonic loops in vivo in the rat. Digestion 45: 93–101

    Google Scholar 

  29. Rao SSC, Edwards CA, Austen CJ, Bruce C, Read NW (1988) Impaired colonic fermentation of carbohydrate after ampicillin. Gastroenterology 94: 928–932

    Google Scholar 

  30. Reynolds DA, Rajendran VM, Binder HJ (1993) Bicarbonate-stimulated (14C) butyrate uptake in basolateral membrane vesicles of rat distal colon. Gastroenterology 105: 725–732

    Google Scholar 

  31. Roediger WEW (1980) The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet II: 712–715

    Google Scholar 

  32. Roediger WEW (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83: 424–429

    Google Scholar 

  33. Roediger WEW (1994) Famine, fiber, fatty acids, and failed colonic absorption: does fiber fermentation ameliorate diarrhea? Parenter Enter Nutr 18: 4–8

    Google Scholar 

  34. Roediger WEW, Nance S (1986) Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br J Exp Path 67: 773–782

    Google Scholar 

  35. Roediger WEW, Duncan A, Kapaniris O, Millard S (1993) Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 104: 802–809

    Google Scholar 

  36. Rubinstein R, Howard AV, Wrong OM (1969) In vivo dialysis of faeces as a method of stool analysis. IV The organic anion component. Clin Sci 37: 549–564

    Google Scholar 

  37. Rumessen JJ (1992) Review. Fructose and related food carbohydrates. Sources, intake, absorption, and clinical implications. Scand J Gastroenterol 27: 819–828

    Google Scholar 

  38. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG Jr (1980) Absorption of short-chain fatty acids by the colon. Gastroenterology 78: 1500–1507

    Google Scholar 

  39. Scheppach W (1994) Effects of short chain fatty acids on gut morphology and function. Gut [Suppl] 1: S35–38

    Google Scholar 

  40. Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, Richter F, Dusel G, Kasper H (1992) Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103: 51–56

    Google Scholar 

  41. Senagore AJ, MacKeigan JM, Scheider M, Ebrom JS (1992) Short-chain fatty acid enemas: a cost-effective alternative in the treatment of nonspecific proctosigmoiditis. Dis Colon Rectum 35: 923–927

    Google Scholar 

  42. Soergel KH, Harig JM, Loo FD, Ramaswamy K, Wood CM (1989) Colonic fermentation and absorption of SCFA in man. Acta Vet Scand Suppl 86: 107–115

    Google Scholar 

  43. Titus E, Ahearn GA (1992) Review. Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acids. Am J Physiol 262: R547–553

    Google Scholar 

  44. Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M (1988) Fecal lactate and ulcerative colitis. Gastroenterology 95: 1564–1568

    Google Scholar 

  45. Wolever TMS, Spadafora P, Eshuis H (1992) Interaction between colonic acetate and propionate in humans. Am J Clin Nutr 53: 681–687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soergel, K.H. Colonic fermentation: metabolic and clinical implications. Clin Investig 72, 742–748 (1994). https://doi.org/10.1007/BF00180540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00180540

Key words

Navigation