Skip to main content

Evaluation of Genetic Stability of In Vitro Raised Orchids Using Molecular-Based Markers

  • Chapter
  • First Online:
Commercial Scale Tissue Culture for Horticulture and Plantation Crops

Abstract

Orchids comprise some of the world’s most valuable floricultural and ornamental plants. Apart from their beauty, they also possess valuable phytochemicals like alkaloids, flavonoids, bibenzyl derivatives, and phenanthrenes that are responsible for their medicinal properties. Unfortunately, several orchid species are considered to be threatened due to over-exploitation by orchid lovers and pharmaceutical companies. The conventional mode of propagation is not suitable for conserving orchids because of their delicate seeds. Therefore, micropropagation serves as an age-old reliable alternative method for propagating orchids. However, in vitro regeneration’s major concerns are genetic instability of the in vitro regenerants, which might be due to somaclonal variation. Several factors such as media composition, the concentration of plant growth regulators, and culture duration might induce somaclonal variation. Therefore, evaluation of genetic stability of in vitro raised orchids is necessary for large-scale cultivation. DNA-based molecular markers such as RAPD, RFLP, AFLP, and ISSR are commonly used markers to evaluate the genetic stability of the in vitro regenerants. With the advancement of molecular techniques, advanced markers such as mitochondrial and chloroplast-based microsatellites and retrotransposon markers are being used as they reveal genetic information through increased genome coverage. Nowadays, flow cytometry analysis is also being used to ascertain the genetic fidelity of in vitro raised plants by evaluating the ploidy level and genome size of in vitro propagated plants. This chapter summarizes the employment of different molecular markers used for assessing the genetic fidelity of in vitro raised orchids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal, M., N. Shrivastava, and H. Padh. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27 (4): 617–631.

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh, M., H. Krishna, M. Eftekhari, M. Modareskia, and M. Modareskia. 2015. Assessment of clonal fidelity in micropropagated horticultural plants. Journal of Chemical and Pharmaceutical Research 7 (12): 977–990.

    CAS  Google Scholar 

  • Antony, J.J., R.A. Shamshir, R. Poobathy, B.L. Chew, and S. Subramaniam. 2015. Somaclonal variations were not induced by the cryopreservation: Levels of somaclonal variations of in vitro and thawed protocorms of dendrobium Bobby Messina analysed by SCoT and TRAP DNA markers. South African Journal of Botany 100: 148–157.

    Article  CAS  Google Scholar 

  • Arditti, J. 1992. Fundamentals of orchid biology. New York: Wiley.

    Google Scholar 

  • Berliocchi, L. 2004. In The orchid in lore and legend, ed. M. Griffiths. Portland, OR: Timber Press.

    Google Scholar 

  • Bennici, A., M. Anzidei, and G.G. Vendramin. 2004. Genetic stability and uniformity of Foeniculum vulgare Mill regenerated plants through organogenesis and somatic embryogenesis. Plant Science 166 (1): 221–227.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., S. Kumaria, R. Diengdoh, and P. Tandon. 2014. Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene 2: 489–504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya, P., S. Kumaria, N. Job, and P. Tandon. 2015. Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of dendrobium thyrsiflorum: A threatened, medicinal orchid. Plant Cell, Tissue and Organ Culture 122 (3): 535–550.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., S. Kumaria, N. Job, and P. Tandon. 2016a. En-masse production of elite clones of dendrobium crepidatum: A threatened, medicinal orchid used in traditional Chinese medicine (TCM). Journal of Applied Research on Medicinal and Aromatic Plants 3 (4): 168–176.

    Article  Google Scholar 

  • Bhattacharyya, P., S. Kumaria, and P. Tandon. 2016b. High frequency regeneration protocol for Dendrobium nobile: A model tissue culture approach for propagation of medicinally important orchid species. South African journal of Botany 104: 232–243.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., V. Kumar, and J. Van Staden. 2017. Assessment of genetic stability amongst micropropagated Ansellia africana, a vulnerable medicinal orchid species of Africa using SCoT markers. South African Journal of Botany 108: 294–302.

    Article  CAS  Google Scholar 

  • ———. 2018a. In vitro encapsulation based short term storage and assessment of genetic homogeneity in regenerated Ansellia africana (leopard orchid) using gene targeted molecular markers. Plant Cell, Tissue and Organ Culture 133 (2): 299–310.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., P. Paul, S. Kumaria, and P. Tandon. 2018b. Transverse thin cell layer (t-TCL)-mediated improvised micropropagation protocol for endangered medicinal orchid Dendrobium aphyllum Roxb: An integrated phytomolecular approach. Acta Physiologiae Plantarum 40 (8): 1–4.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., V. Kumar, J. Grúz, K. Doležal, and J. Van Staden. 2019. Deciphering the phenolic acid reserves and antioxidant activity within the protocorm like bodies of Ansellia africana: A vulnerable medicinal orchid. Industrial Crops and Products 135: 21–29.

    Article  CAS  Google Scholar 

  • Bose, Biswajit, Suman Kumaria, Hiranjit Choudhury, and Pramod Tandon. 2017. Insights into nuclear DNA content, hydrogen peroxide and antioxidative enzyme activities during transverse thin cell layer organogenesis and ex vitro acclimatization of Malaxis wallichii, a threatened medicinal orchid. Physiology and Molecular Biology of Plants 23 (4): 955–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W.H., T.M. Chen, Y.M. Fu, R.M. Hsieh, and W.S. Chen. 1998. Studies on somaclonal variation in Phalaenopsis. Plant Cell Reports 18 (1): 7–13.

    Article  Google Scholar 

  • Chin, C.K., Z.H. Lee, S.A. Mubbarakh, J.J. Antony, B.L. Chew, and S. Subramaniam. 2019. Effects of plant growth regulators and activated charcoal on somaclonal variations of protocorm-like bodies (PLBs) of dendrobium Sabin blue orchid. Biocatalysis and Agricultural Biotechnology 22: 101426.

    Article  Google Scholar 

  • Choudhury, R.R., S. Basak, A.M. Ramesh, and L. Rangan. 2014. Nuclear DNA content of Pongamia pinnata L. and genome size stability of in vitro-regenerated plantlets. Protoplasma 251 (3): 703–709.

    Article  CAS  PubMed  Google Scholar 

  • Chugh, S., S. Guha, and U. Rao. 2009. Micropropagation of orchids: A review on the potential of different explants. Scientia Horticulturae 122: 507–520.

    Article  CAS  Google Scholar 

  • Cloutier, S., and B. Landry. 1994. Molecular markers applied to plant tissue culture. In Vitro Cellular & Developmental Biology. Plant 30: 32–39.

    Article  Google Scholar 

  • Collard, B.C.Y., and D.J. Mackill. 2009. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter 27: 86–93.

    Article  CAS  Google Scholar 

  • Dangi, B., V. Khurana-Kaul, S.L. Kothari, and S. Kachhwaha. 2014. Micro-propagation of Terminalia bellerica from nodal explants of mature tree and assessment of genetic fidelity using ISSR and RAPD markers. Physiology and Molecular Biology of Plants 20: 509–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport, T.R.B., and B. Bytebier. 2004. Kitulo Plateau, Tanzania—A first African park for orchids. Orchid Review 112: 160–165.

    Google Scholar 

  • De, L.C. 2015. Commercial orchids. Poland: De Gruyter Open.

    Google Scholar 

  • De, L.C., A.M. Khan, R. Kumar, and R.P. Medhi. 2014. Orchid farming-a remunerative approach for farmers livelihood. International Journal of Science and Research 3: 468–471.

    Google Scholar 

  • Decary, R. 1955. Quelques plantesaromatiques et à parfum de la flore de Madagascar. Journal d’agriculture tropicale et de botanique appliquée 2: 416–422.

    Article  Google Scholar 

  • Decruse, S.W., A. Gangaprasad, S. Seeni, and S. Menon. 2003. A protocol for shoot multiplication from foliar meristem of Vanda spathulata (L.) Spreng. Indian Journal of Experimental Biology 41: 924–927.

    PubMed  Google Scholar 

  • Dolezel, J., M. Valarik, J. Vrana, M.A. Lysak, E. Hribova, J. Bartos, N. Gasmanova, M. Dolezelova, J. Safar, and H. Simkova. 2004. Molecular cytogenetics and cytometry of bananas (Musa spp.). In Banana improvement: Cellular, molecular biology, and induced mutations, ed. S.M. Jain and R. Swennen, 229–244. Enfield, Netherlands: Sciences Publishers.

    Google Scholar 

  • Dressler, R.L. 1993. Phylogeny and classification of orchid family. USA: Timber Press.

    Google Scholar 

  • Duggal, S.C. 1971. Orchids in human affairs (a review). Quarterly Journal of Crude Drug Research 11: 1727–1733.

    Article  Google Scholar 

  • Faria, R.T., F.N. Rodrigues, L.V.R. Oliveira, and C. Müller. 2004. In vitro Dendrobium nobile plant growth and rooting in different sucrose concentrations. Horticultura Brasileira 22: 780–783. (in Portuguese).

    Article  Google Scholar 

  • Ferreira, W.D., G.B. Kerbauy, and A.P. Costa. 2006. Micropropagation and genetic stability of a dendrobium hybrid (Orchidaceae). Vitro Cellular & Developmental Biology-Plant 42 (6): 568–571.

    Article  CAS  Google Scholar 

  • Galdiano, R.F., E.G. de Macedo Lemos, and W.A. Vendrame. 2013. Cryopreservation, early seedling development, and genetic stability of Oncidium flexuosum Sims. Plant Cell, Tissue and Organ Culture 114 (1): 139–148.

    Article  Google Scholar 

  • Galdiano, Renato Fernandes, Eliana Gertrudes de Macedo Lemos, Ricardo Tadeu de Faria, and Wagner Aparecido Vendrame. 2014. Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds. Applied Biochemistry and Biotechnology 172 (5): 2521–2529.

    Article  CAS  PubMed  Google Scholar 

  • Gianfranco, V., C. Ravalli, and R. Cremonini. 2008. The karyotype as a tool to identify plant species: Vicia species belonging to Vicia subgenus. Caryologia 61 (3): 300–319.

    Article  Google Scholar 

  • Giri, L., A. Jugran, S. Rawat, P. Dhyani, H. Andola, I.D. Bhatt, R.S. Rawal, and U. Dhar. 2012. In vitro propagation, genetic and phytochemical assessment of Habenaria edgeworthii: An important Astavarga plant. Acta Physiologiae Plantarum 34 (3): 869–875.

    Article  Google Scholar 

  • Goh K (2013) National flower series – South East Asia 6– Myanmar. Available at: https://kwgls.wordpress.com/2013/04/30/98/

    Google Scholar 

  • Gorji, A.M., P. Poczai, Z. Polgar, and J. Taller. 2011. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American Journal of Potato Research 88: 226–237.

    Article  Google Scholar 

  • Hammerschalg, F.A. “Somaclonal Variation”. (1992).

    Google Scholar 

  • Haque, S.M., and B. Ghosh. 2017. Regeneration of cytologically stable plants through dedifferentiation, redifferentiation, and artificial seeds in Spathoglottis plicata Blume. (Orchidaceae). Horticultural Plant Journal 3 (5): 199–208.

    Article  Google Scholar 

  • Hinsley, Amy, Hugo J. De Boer, Michael F. Fay, Stephan W. Gale, Lauren M. Gardiner, Ranasinghe S. Gunasekara, Pankaj Kumar, et al. 2018. A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society 186 (4): 435–455.

    Article  Google Scholar 

  • Hossain, Mohammad Musharof. 2011. Therapeutic orchids: Traditional uses and recent advances-an overview. Fitoterapia 82 (2): 102–140.

    Article  PubMed  Google Scholar 

  • Hossain, M.M., R. Kant, P.T. Van, B. Winarto, S. Zeng, and J.A. Teixeira da Silva. 2013. The application of biotechnology to orchids. Critical Reviews in Plant Sciences 32 (2): 69–139.

    Article  CAS  Google Scholar 

  • Israeli, Y., O. Reuveni, and E. Lahav. 1991. Qualitative aspects of somaclonal variations in banana propagated by in vitro techniques. Scientia Horticulturae 48: 71–88.

    Article  Google Scholar 

  • Jain, S.M. 2001. Tissue culture-derived variation in crop improvement. Euphytica 118: 153–166.

    Article  CAS  Google Scholar 

  • Jeon, M.W., M.B. Ali, E.J. Hahn, and K.Y. Paek. 2005. Effects of photon flux density on the morphology, photosynthesis and growth of a CAM orchid, Doritaenopsis during post-micropropagation acclimatization. Plant Growth Regulation 45 (2): 139–147.

    Article  CAS  Google Scholar 

  • Jeon, M.W., M.B. Ali, E.J. Hahn, and K.Y. Pack. 2006. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environmental and Experimental Botany 55 (1–2): 183–194.

    Article  CAS  Google Scholar 

  • Jiang, G.L. 2013. Molecular markers and marker-assisted breeding in plants. In Plant breeding from laboratories to fields, ed. S.B. Andersen, 45–83. Rijeka: InTech.

    Google Scholar 

  • Kalendar, R., and A.H. Schulman. 2006. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols 1: 2478–2484.

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler, Shawn M., Heidi F. Kaeppler, and Yong Rhee. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Gene Silencing: 59–68.

    Google Scholar 

  • Karp, A. 1994. Origins, causes and uses of variation in plant tissue cultures. In Plant cell and tissue culture, ed. I.K. Vasil and T.A. Thorpe, 139–152. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Kaushik, P. 1983. Anatomical and ecological marvels of the Himalayan orchids. New Delhi, India: Today and Tomorrow’s Printers and Publishers.

    Google Scholar 

  • Kazemi, Masoumeh, and Behzad Kaviani. 2020. Anatomical, morphological, and physiological changes in colchicine-treated protocormlike bodies of Catasetum pileatum Rchb.f. in-vitro. Cogent Biology 6 (1): 1840708.

    Article  CAS  Google Scholar 

  • Khor, S.P., L.C. Yeow, R. Poobathy, R. Zakaria, B.L. Chew, and S. Subramaniam. 2020. Droplet-vitrification of Aranda Broga blue orchid: Role of ascorbic acid on the antioxidant system and genetic fidelity assessments via RAPD and SCoT markers. Biotechnology Reports 26: e00448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khory, R.N. 1982. Materia Medica of India and their therapeutics. Neeraj Publishing House.

    Google Scholar 

  • Kırdök, E., H. Ekinci, and Y.Ö. Çiftçi. 2016. Cryopreservation of somatic embryos of ornamental plants. In Somatic embryogenesis in ornamentals and its applications, 121–139. New Delhi: Springer.

    Chapter  Google Scholar 

  • Kimura, K., and H.J. Migo. 1936. New species of dendrobium from the Chinese drug shin-hu. The Journal of the Shanghai Science Institute 3: 121–124.

    Google Scholar 

  • Kishor, R., and H.S. Devi. 2009. Induction of multiple shoots in a monopodial orchid hybrid (Aerides vandarum Reichb. F× Vanda stangeana Reichb f) using thidiazuron and analysis of their genetic stability. Plant Cell, Tissue and Organ Culture 97 (2): 121–129.

    Article  Google Scholar 

  • Krishna, H., M. Alizadeh, D. Singh, U. Singh, N. Chauhan, M. Eftekhari, and R.K. Sadh. 2016. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6 (1): 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, L.S. 1999. DNA markers in plant improvement: An overview. Biotechnology Advances 17 (2–3): 143–182.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., V. Chaudhary, R. Sharma, U. Sirohi, and J. Singh. 2018a. Advances in biochemical and molecular marker techniques and their applications in genetic studies of orchid: A review. International Journal of Chemical Studies 6: 806–822.

    CAS  Google Scholar 

  • Kumar, M., V. Chaudhary, U. Sirohi, M.K. Singh, S. Malik, and R.K. Naresh. 2018b. Biochemical and molecular markers for characterization of chrysanthemum germplasm: A review. Journal of Pharmacognosy and Phytochemistry 7 (5): 2641–2652.

    CAS  Google Scholar 

  • Kumar, M., V. Chaudhary, U. Sirohi, V.R. Sharma, and R.K. Naresh. 2019. Application of molecular markers and their utility in genetic studies of floricultural crops: A review. International Journal of Agriculture, Environment and Biotechnology 12 (3): 229–247.

    CAS  Google Scholar 

  • Larkin, P.J., and W.R. Scowcroft. 1981. Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics 60 (4): 197–214.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, Castle. 1886. Orchids their structure, history, and culture (illustrated). London: Journal of Horticulture Office.

    Google Scholar 

  • Longuefosse, J.L. 2006. Le guide de phytothérapiecréole: bien se soigner par les plantescréoles. Orphie: Saint-Denis à La Réunion.

    Google Scholar 

  • Lubinsky, P., S. Bory, J.H. Hernández, S.C. Kim, and A. Gómez-Pompa. 2008a. Origins and dispersal of cultivated vanilla (Vanilla planifolia jacks. [Orchidaceae]). Economic Botany 62: 127–138.

    Article  CAS  Google Scholar 

  • Lubinsky, P., K.M. Cameron, M.C. Molina, M. Wong, S. Lepers-Andrzejewski, A. Gómez-Pompa, and S.C. Kim. 2008b. Neotropical roots of a Polynesian spice: The hybrid origin of Tahitian vanilla, Vanilla tahitensis (Orchidaceae). American Journal of Botany 95: 1040–1047.

    Article  CAS  PubMed  Google Scholar 

  • Lüning, B. 1974. Alkaloid content of Orchidaceae. In Theorchids: Scientific studies, ed. C.L. Withner. New York: John Wiley and Sons.

    Google Scholar 

  • Mahendran, G. 2014. An efficient in vitro propagation, antioxidant and antimicrobial activities of Aphyllorchismontana (Reichenb. F.). Journal of Ornamental Plants 4 (4): 189–204.

    Google Scholar 

  • Mahendran, G., and V.N. Bai. 2016. An efficient in vitro propagation, antioxidant and antimicrobial activities of AphyllorchismontanaRchb. F. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. 150 (5): 1087–1095.

    Article  Google Scholar 

  • Meesawat, U., T. Srisawat, L. Eksomtramage, and K. Kanchanapoom. 2008. Nuclear DNA content of the pigeon orchid (Dendrobium crumenatum Sw.) with the analysis of flow cytometry. Songklanakarin. Journal of Science & Technology 30 (3): 277–280.

    Google Scholar 

  • Mitra, G.C. 1971. Studies on seeds, shoot tips and stem disc of an orchid grown inaseptic culture. Indian Journal of Experimental Biology 9: 79–85.

    CAS  Google Scholar 

  • Nadeem, M.A., M.A. Nawaz, M.Q. Shahid, Y. Doğan, G. Comertpay, M. Yıldız, R. Hatipoğlu, F. Ahmad, A. Alsaleh, N. Labhane, and H. Özkan. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment 32 (2): 261–285.

    Article  CAS  Google Scholar 

  • Naing, Aung Htay, Jae Dong Chung, In Sook Park, and Ki Byung Lim. 2011. Efficient plant regeneration of the endangered medicinal orchid, Coelogyne cristata using protocorm-like bodies. Acta Physiologiae Plantarum 33 (3): 659–666.

    Article  Google Scholar 

  • Nanekar, Vikas, Varsha Shriram, Vinay Kumar, and P.B. Kishor. 2014. Asymbiotic in vitro seed germination and seedling development of Eulophia nuda Lindl., an endangered medicinal orchid. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 84 (3): 837–846.

    Article  Google Scholar 

  • Negi, D., and S. Saxena. 2010. Ascertaining clonal fidelity of tissue culture raised plants of BambusabalcooaRoxb. Using inter simple sequence repeat markers. New Forest 40: 1–8.

    Article  Google Scholar 

  • Nookaraju, A., and D.C. Agrawal. 2012. Genetic homogeneity of in vitro raised plants of grapevine cv. Crimson seedless revealed by ISSR and microsatellite markers. South African Journal of Botany 78: 302–306.

    Article  CAS  Google Scholar 

  • Oliya, B.K., K. Chand, L.S. Thakuri, M.K. Baniya, A.K. Sah, and B. Pant. 2021. Assessment of genetic stability of micropropagated plants of Rhynchostylis retusa (L.) using RAPD markers. Scientia Horticulturae 281: 110008.

    Article  CAS  Google Scholar 

  • Paul, P., M. Joshi, D. Gurjar, S. Shailajan, and S. Kumaria. 2017. In vitro organogenesis and estimation of β-sitosterol in Dendrobium fimbriatum hook.: An orchid of biopharmaceutical importance. South African Journal of Botany 113: 248–252.

    Article  CAS  Google Scholar 

  • Peredo, E.L., R. Arroyo-Garcia, and M.A. Revilla. 2009. Epigenetic changes detected in micropropagated hop plants. Journal of Plant Physiology 166: 1101–1111.

    Article  CAS  PubMed  Google Scholar 

  • Pierik, R.L.M. 1987. In vitro culture of higher plants. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Pinheiro, L.R., A.R. Rabbani, A.V. da Silva, Lédo A. da Silva, K.L. Pereira, and L.E. Diniz. 2012. Genetic diversity and population structure in the Brazilian Cattleya labiata (Orchidaceae) using RAPD and ISSR markers. Plant Systematics and Evolution 298 (10): 1815–1825.

    Article  Google Scholar 

  • Pornchuti, W., K. Thammasiri, N. Chuenboonngarm, and N. Panvisavas. 2016. Micropropagation of Spathoglottis eburnea Gagnep, a Thai orchid species, through shoot tips. International Symposium on Tropical and Subtropical Ornaments 1167: 87–94.

    Google Scholar 

  • Prasad, G., A.A. Mao, D. Vijayan, S. Mandal, K. Chaudhuri, and T. Seal. 2016. Comparative HPLC fingerprinting and antioxidant activities of in vitro and in vivo grown Aerides odorata, a medicinal orchid. Journal of Chemical, Biological and Physical Sciences 6 (2): 454–468.

    CAS  Google Scholar 

  • Prasad, G., T. Seal, A.A. Mao, D. Vijayan, and A. Lokho. 2021. Assessment of clonal fidelity and phytomedicinal potential in micropropagated plants of Bulbophyllum odoratissimum-an endangered medicinal orchid of indo Burma mega biodiversity hotspot. South African Journal of Botany 141: 487–497.

    Article  CAS  Google Scholar 

  • Rajput, S., and V. Agrawal. 2020. Micropropagation of Atropa acuminata Royle ex Lindl.(a critically endangered medicinal herb) through root callus and evaluation of genetic fidelity, enzymatic and non-enzymatic antioxidant activity of regenerants. Acta Physiologiae Plantarum 42 (11): 1–7.

    Article  CAS  Google Scholar 

  • Rani, V., and S.N. Raina. 2000. Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In Vitro Cellular & Developmental Biology. Plant 36: 319–330.

    Article  CAS  Google Scholar 

  • Reddy, J. 2008. Biotechnology of orchids. New Delhi, India: I.K. International.

    Google Scholar 

  • Rout, G.R., A. Mohapatra, and S.M. Jain. 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology advance variation in plants. Plant Molecular Biology 43: 179–188.

    Google Scholar 

  • Roy, A.R., S. Sajeev, A. Pattanayak, and B.C. Deka. 2012. TDZ induced micropropagation in Cymbidium giganteum wall. Ex Lindl. and assessment of genetic variation in the regenerated plants. Plant Growth Regulation 68 (3): 435–445.

    Article  CAS  Google Scholar 

  • Ryynänen, L., and T. Aronen. 2005. Genome fidelity during short-and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell, Tissue and Organ Culture 83 (1): 21–32.

    Article  CAS  Google Scholar 

  • Saleem, U. 2007. Columbia Science Review 4: 22–23.

    Google Scholar 

  • Samarfard, S., M.A. Kadir, S.B. Kadzimin, and S. Ravanfar. 2013. Genetic stability of in vitro multiplied Phalaenopsis gigantea protocorm-like bodies as affected by chitosan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41 (1): 177–183.

    Article  CAS  Google Scholar 

  • Semagn, K., Å. Bjørnstad, and M.N. Ndjiondjop. 2006. An overview of molecular marker methods for plants. African Journal of Biotechnology 5 (25): 2540–2568.

    CAS  Google Scholar 

  • Sherif, N.A., J.F. Benjamin, T.S. Kumar, and M.V. Rao. 2018. Somatic embryogenesis, acclimatization and genetic homogeneity assessment of regenerated plantlets of Anoectochilus elatus Lindl., an endangered terrestrial jewel orchid. Plant Cell Tissue and Organ Culture 132 (2): 303–316.

    Google Scholar 

  • ———, N.A., T.S. Kumar, and M.V. Rao. 2020. DNA barcoding and genetic fidelity assessment of micropropagated Aenhenrya rotundifolia (blatt.) CS Kumar and FN Rasm.: A critically endangered jewel orchid. Physiology and Molecular Biology of Plants 26 (12): 2391–2405.

    Google Scholar 

  • Singh, A.P. 2006. Dhanwantri Nighantu. New Delhi: Chaukhambha Orientalia.

    Google Scholar 

  • Singh, D.K., and S.B. Babbar. 2016. In vitro propagation and chemical profiling of Herminium lanceum (Thunb. Ex Sw.) Vuijk, a medicinally important orchid, for therapeutically important phenolic acids. Plant Biotechnology 33: 153–160.

    Article  CAS  Google Scholar 

  • Singh, A., and S. Duggal. 2009. Medicinal orchids-an overview. Ethnobotanical Leaflets 2009 (3): 3.

    Google Scholar 

  • Singh, S.K., M.K. Rai, and L. Sahoo. 2012a. An improved and efficient micropropagation of Eclipta alba through transverse thin cell layer culture and assessment of clonal fidelity using RAPD analysis. Industrial Crops and Products 37: 328–333.

    Article  CAS  Google Scholar 

  • Singh, S., A.K. Singh, S. Kumar, M. Kumar, P.K. Pandey, and M.C. Singh. 2012b. Medicinal properties and uses of orchids: A concise review. Elixir Applied Botany 52: 11627–11634.

    Google Scholar 

  • Singh, D.K., B.A. Mir, S. Babbar, and S.B. Babbar. 2021. Cost-effective in vitro multiplication and phenolic profile of an important medicinal orchid, Satyrium nepalense D. Don. Journal of Biologically Active Products from Nature 11 (2): 162–182.

    Article  CAS  Google Scholar 

  • Sliwinska, E. 2018. Flow cytometry–a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Horticulturae 30 (1): 103–128.

    Article  Google Scholar 

  • Song, C., J. Kang, X. Ji, C. Fu, X. Wen, L. Yu, and G. Qiao. 2007. Efficient plant regeneration and genetic fidelity assessment of in vitro-derived plants of Dendrobium nobile-an endangered medicinal and ornamental herb. Orchid Science and Biotechnology 1 (2): 51–55.

    Google Scholar 

  • Soonthornkalump, S., K. Nakkanong, and U. Meesawat. 2019. In vitro cloning via direct somatic embryogenesis and genetic stability assessment of Paphiopedilum niveum (Rchb. F.) stein: The endangered Venus’s slipper orchid. In Vitro Cellular & Developmental Biology. Plant 55 (3): 265–276.

    Article  CAS  Google Scholar 

  • Sorina, P., B.O. Maria, A. Lazăr, and C. Ursu. 2013. The assessment of the variability induced by tissue culture to cymbidium sp. using RAPD markers. Journal of Horticulture, Forestry and Biotechnology 17 (2): 273–276.

    Google Scholar 

  • Surenciski, M.R., M. Dematteis, and E.A. Flachsland. 2007. Chromosome stability in cryopreserved germplasm of Cyrtopodium hatschbachii (Orchidaceae). In Annales botanici fennici, 287–292. Finnish Zoological and Botanical Publishing Board.

    Google Scholar 

  • Tanksley, S.D., N.D. Young, A.H. Paterson, and M.W. Bonierbale. 1989. RFLP mapping in plant breeding: New tools for an old science. Biotechnology 7 (3): 257–264.

    CAS  Google Scholar 

  • Than, M.M., A. Pal, and S. Jha. 2011. Chromosome number and modal karyotype in a polysomatic endangered orchid, Bulbophyllum auricomum Lindl., the Royal Flower of Myanmar. Plant Systematics and Evolution 294 (3): 167–175.

    Article  Google Scholar 

  • Tikendra, L., T. Amom, and P. Nongdam. 2019a. Molecular genetic homogeneity assessment of micropropagated Dendrobium moschatum Sw.-A rare medicinal orchid, using RAPD and ISSR markers. Plant Gene 19: 100196.

    Article  CAS  Google Scholar 

  • Tikendra, L., A.S. Koijam, and P. Nongdam. 2019b. Molecular markers based genetic fidelity assessment of micropropagated dendrobium chrysotoxum Lindl. Meta Gene 20: 100562.

    Article  Google Scholar 

  • Tiwari, J.K., P. Chandel, S. Gupta, J. Gopal, B.P. Singh, and V. Bhardwaj. 2013. Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physiology and Molecular Biology of Plants 19: 587–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Department of Agriculture. 2006. Floriculture and nursery crop situation and outlook yearbook. Washington, DC: Economic Research Service.

    Google Scholar 

  • Vendrame, Wagner A. 2015. Cryopreservation of orchid seeds, protocorms, and pollen. Proceedings of the Florida State Horticultural Society 128: 242–246.

    Google Scholar 

  • Vettorazzi, R.G., V.S. Carvalho, M.C. Teixeira, E. Campostrini, M. Da Cunha, E.M. de Matos, and L.F. Viccini. 2019. Cryopreservation of immature and mature seeds of Brazilian orchids of the genus Cattleya. Scientia Horticulturae 256: 108603.

    Article  Google Scholar 

  • Vij, S.P. 2002. In Orchid and tissue culture: Current status, ed. S.K. Nandi, L.M.S. Palni, and A. Kumar, 491–502. Nainital, India: Gyanodaya Prakashan Publication.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, M.F. 2007. Medicinal plant fact sheet: Cypripedium: lady's slipper orchids. Arlington, VA.

    Google Scholar 

  • Xiang, N., Y. Hong, and L.T. Lam-Chan. 2003. Genetic analysis of tropical orchid hybrids (dendrobium) with fluorescence amplified fragment-length polymorphism (AFLP). Journal of the American Society for Horticultural Science 128 (5): 731–735.

    Article  CAS  Google Scholar 

  • Zhang, F., Y. Lv, H. Dong, and S. Guo. 2010. Analysis of genetic stability through Intersimple sequence repeats molecular markers in micropropagated plantlets of Anoectochilus formosanus H AYATA, a medicinal plant. Biological and Pharmaceutical Bulletin 33 (3): 384–388.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohapatra, P., Ray, A., Jena, S. (2022). Evaluation of Genetic Stability of In Vitro Raised Orchids Using Molecular-Based Markers. In: Gupta, S., Chaturvedi, P. (eds) Commercial Scale Tissue Culture for Horticulture and Plantation Crops . Springer, Singapore. https://doi.org/10.1007/978-981-19-0055-6_13

Download citation

Publish with us

Policies and ethics