Skip to main content

3D Printing of Composite Sandwich Structures for Aerospace Applications

  • Chapter
  • First Online:
High-Performance Composite Structures

Abstract

This chapter briefly explores the importance of 3D printing technology in fabrication of composite sandwich structure for aerospace applications. Recently 3D printing composite sandwich structure showed immense potential over traditional manufacturing process due to its freedom to design customization and print complex composite sandwich structure with minimum wastage of material. The investigation here enlightens the types of core, joining method, advantages and performance of 3D printing composite sandwich structure intended to aerospace industries is investigated in details. The performance of the 3D printed composite sandwich structure usually measured using compression, bending and impact test. It is also noted energy absorption characteristic is the crucial factor that measures the performance of the sandwich structure. The energy absorption depends on the topology of the unit cell and the material for fabrication. It is concluded that 3D printing is most flexible and sustainable technology for manufacturing composite sandwich structure in aerospace industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf 35:1286–1296

    Article  Google Scholar 

  2. Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37

    Article  Google Scholar 

  3. Joshi SC, Sheikh AA (2015) 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyping 10(4):175–185

    Article  Google Scholar 

  4. Wang YC, Chen T, Yeh YL (2019) Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. Int J Adv Manuf Technol 105(10):4059–4069

    Article  Google Scholar 

  5. Sreehitha V (2017) Impact of 3D printing in automotive industry. Int J Mech Prod Eng 5(2):91–94

    Google Scholar 

  6. Liu Z, Zhang M, Bhandari B, Wang Y (2017) 3D printing: Printing precision and application in food sector. Trends Food Sci Technol 2(1):1–36

    CAS  Google Scholar 

  7. Hager I, Golonka A, Putanowicz R (2016) 3D printing of buildings and building components as the future of sustainable construction? Procedia Eng 151:292–299

    Article  Google Scholar 

  8. Vanderploeg A, Lee SE, Mamp M (2017) The application of 3D printing technology in the fashion industry. Int J Fashion Des Technol Edu 10(2):170–179

    Article  Google Scholar 

  9. Lee J, Kim HC, Choi JW, Lee IH (2017) A review on 3D printed smart devices for 4D printing. Int J Prec Eng Manuf-Green Technol 4(3):373–383

    Article  Google Scholar 

  10. Kalsoom U, Nesterenko PN, Paull B (2016) Recent developments in 3D printable composite materials. RSC Adv 6(65):60355–60371

    Article  CAS  Google Scholar 

  11. Sahu SK, Badgayan ND, Samanta S, Sreekanth PR (2018) Quasistatic and dynamic nanomechanical properties of HDPE reinforced with 0/1/2 dimensional carbon nanofillers based hybrid nanocomposite using nanoindentation. Mater Chem Phys 203:173–184

    Article  CAS  Google Scholar 

  12. Badgayan ND, Sahu SK, Samanta S, Sreekanth PR (2018) Assessment of nanoscopic dynamic mechanical properties and BCN triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: an insight into medical applications. J Mech Behav Biomed Mater 80:180–188

    Article  CAS  Google Scholar 

  13. Sahu SK, Badgayan ND, Samanta S, Sreekanth PR (2020) Experimental investigation on multidimensional carbon nanofiller reinforcement in HDPE: an evaluation of mechanical performance. Mater Today Proc 24:415–421

    Article  CAS  Google Scholar 

  14. Badgayan ND, Samanta S, Sahu SK, Siva SV, Sadasivuni KK, Sahu D, Sreekanth PR (2017) Tribological behaviour of 1D and 2D nanofiller based high densitypoly-ethylene hybrid nanocomposites: a run-in and steady state phase analysis. Wear 376:1379–1390

    Article  Google Scholar 

  15. Sahu SK, Badgayan ND, Sreekanth PR (2019) Understanding the influence of contact pressure on the wear performance of HDPE/multi-dimensional carbon filler based hybrid polymer nanocomposites. Wear 438

    Google Scholar 

  16. Badgayan ND, Sahu SK, Samanta S, Sreekanth PR (2019) Evaluation of dynamic mechanical and thermal behavior of HDPE reinforced with MWCNT/h-BNNP: an attempt to find possible substitute for a metallic knee in transfemoral prosthesis. Int J Thermophys 40(10):1–20

    Article  CAS  Google Scholar 

  17. Sahu SK, Badgayan ND, Samanta S, Sreekanth PR (2018) Dynamic mechanical thermal analysis of high density polyethylene reinforced with nanodiamond, carbon nanotube and graphite nanoplatelet. Mater Sci Forum 917:27–31

    Article  Google Scholar 

  18. Badgayan ND, Sahu SK, Samanta S, Sreekanth PR (2020) An insight into mechanical properties of polymer nanocomposites reinforced with multidimensional filler system: a state of art review. Mater Today Proc 24:422–431

    Google Scholar 

  19. Fasel U, Keidel D, Baumann L, Cavolina G, Eichenhofer M, Ermanni P (2020) Composite additive manufacturing of morphing aerospace structures. Manuf Lett 23:85–88

    Article  Google Scholar 

  20. Castanié B, Bouvet C, Ginot M (2020) Review of composite sandwich structure in aeronautic applications. Comp Part C Open Access: 100004

    Google Scholar 

  21. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196

    Article  CAS  Google Scholar 

  22. He M, Hu W (2008) A study on composite honeycomb sandwich panel structure. Mater Des 29(3):709–713

    Article  CAS  Google Scholar 

  23. Bhushan B, Caspers M (2017) An overview of additive manufacturing (3D printing) for microfabrication. Microsyst Technol 23(4):1117–1124

    Article  Google Scholar 

  24. Mao M, He J, Li X, Zhang B, Lei Q, Liu Y, Li D (2017) The emerging frontiers and applications of high-resolution 3D printing. Micromachines 8(4):113

    Article  Google Scholar 

  25. http://www.learneasy.info/MDME/MEMmods/MEM30006A/Bending_Stress/Bending_Stress.html.

  26. Chen S, McGregor OPL, Endruweit A et al (2020) Simulation of the forming process for curved composite sandwich panels. Int J Mater Form 13:967–980

    Article  Google Scholar 

  27. Smith LM, Rogers CW (2020) Bonded Bomber B-58, SAE Trans 70 (1962) 477–486 JSTOR. Accessed 26 Apr 2020

    Google Scholar 

  28. Hamer J (1971) Honeycomb structure and its application to the concorde rudder. Composites 2(4):242–245

    Article  Google Scholar 

  29. Joanides JC, Mellin SC, Lackman LM (1961) Mach 3 wing structures stiffened skin versus Sandwich. SAE Trans 69:167–178

    Google Scholar 

  30. Spivak WA (1967) XB-70A Mach 3 design and operating experience. SAE Transactions, pp 114–126

    Google Scholar 

  31. Rogerson DB (1965) Technological advancements resulting from XB-70 performance requirements (No. 650798). SAE Technical Paper

    Google Scholar 

  32. Seemann R, Krause D (2018) Numerical modelling of partially potted inserts in honeycomb sandwich panels under pull-out loading. Compos Struct 203:101–109

    Article  Google Scholar 

  33. Roeseler WG, Sarh B, Kismarton MU, Quinlivan J, Sutter J, Roberts D (2007) Composite structures: the first 100 years. In: 16th international conference on composite materials. Japan Society for Composite Materials Kyoto, Japan, pp 1–41

    Google Scholar 

  34. Armstrong KB, Stevens DW, Alet J 25. Years of use for Nomex honeycomb in floor panels and sandwich structures. Hognat J, Pinzelli R, Gillard E (eds) 50:17–40

    Google Scholar 

  35. Vinson JR (2001) Sandwich structures. Appl Mech Rev 54(3):201–214 (14p). https://doi.org/10.1115/1.3097295

  36. Feng Y, Qiu H, Gao Y, Zheng H, Tan J (2020) Creative design for sandwich structures. Article Int J Adv Robot Syst: 1–24

    Google Scholar 

  37. Li X, Wu L, Ma L, Yan X (2016) Fabrication and mechanical properties of composite pyramidal truss core sandwich panels with novel reinforced frames. J Reinf Plast Compos 35(16):1260–1274

    Article  CAS  Google Scholar 

  38. Feng LJ, Wu LZ, Yu GC (2016) An Hourglass truss lattice structure and its mechanical performances. Mater Des 99:581–591

    Article  Google Scholar 

  39. Xiong J, Du Y, Mousanezhad D, EydaniAsl M, Norato J, Vaziri A (2019) Sandwich structures with prismatic and foam cores: a review. Adv Eng Mater 21(1):1800036

    Article  Google Scholar 

  40. Birman V, Kardomateas GA (2018) Review of current trends in research and applications of sandwich structures. Compos B Eng 142:221–240

    Article  CAS  Google Scholar 

  41. Zhang Z, Lei H, Xu M, Hua J, Li C, Fang D (2019) Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels. Mater Des 178:107858

    Google Scholar 

  42. He W, Liu J, Tao B, Xie D, Liu J, Zhang M (2016) Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures. Compos Struct 158:30–43

    Article  Google Scholar 

  43. Xu GD, Wang ZH, Zeng T, Cheng S, Fang DN (2018) Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Compos Sci Technol 156:296–304

    Article  CAS  Google Scholar 

  44. Yang X, Ma J, Shi Y, Sun Y, Yang J (2017) Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load. Mater Des 135:275–290

    Article  Google Scholar 

  45. Yaraghi NA, Guarín-Zapata N, Grunenfelder LK, Hintsala E, Bhowmick S, Hiller JM, Betts M, Principe EL, Jung JY, Sheppard L, Wuhrer R (2016) A sinusoidally architected helicoidalbiocomposite. Adv Mater 28(32):6835–6844

    Article  CAS  Google Scholar 

  46. Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of—1. Int J Mech Sci 39(3):305–314

    Article  Google Scholar 

  47. Mehrpouya M, Gisario A, Azizi A, Barletta M (2020) Investigation on shape recovery of 3D printed honeycomb sandwich structure. Polym Adv Technol 31(12):3361–3365

    Article  CAS  Google Scholar 

  48. Lira C, Innocenti P, Scarpa F (2009) Transverse elastic shear of auxetic multi re-entrant honeycombs. Compos Struct 90(3):314–322

    Article  Google Scholar 

  49. Hughes TP, Marmier A, Evans KE (2010) Auxetic frameworks inspired by cubic crystals. Int J Solids Struct 47(11–12):1469–1476

    Article  CAS  Google Scholar 

  50. Ingrole A, Hao A, Liang R (2017) Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des 117:72–83

    Article  Google Scholar 

  51. Liu J, Liu J, Mei J, Huang W (2018) Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores. Compos Sci Technol 159:87–102

    Article  CAS  Google Scholar 

  52. Xiong J, Feng L, Ghosh R, Wu H, Wu L, Ma L, Vaziri A (2016) Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores. Compos Struct 156:307–319

    Article  Google Scholar 

  53. Xu J, Wu Y, Wang L, Li J, Yang Y, Tian Y, Gong Z, Zhang P, Nutt S, Yin S (2018) Compressive properties of hollow lattice truss reinforced honeycombs (Honeytubes) by additive manufacturing: patterning and tube alignment effects. Mater Des 156:446–457

    Article  Google Scholar 

  54. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  CAS  Google Scholar 

  55. Wang L, Saito K, Gotou Y, Okabe Y (2019) Design and fabrication of aluminium honeycomb structures based on origami technology. J Sandwich Struct Mater 21(4):1224–1242

    Article  CAS  Google Scholar 

  56. Prabhu G, Katakam V, Sridharan VS, Idapalapati S (2019) Uniaxial tensile failure of multi-core asymmetric sandwich composite structures with bonded repair. Comp Struct 224:111025

    Google Scholar 

  57. Shipsh, A (2001) Failure of sandwich structures with sub-interface damage (Doctoral dissertation, Institution for flygteknik)

    Google Scholar 

  58. Azarmi F, Coyle TW, Mostaghimi J (2009) Flexural properties of sandwich beams consisting of air plasma sprayed alloy 625 and nickel alloy foam. J Mater Sci 44(11):2836–2843

    Article  CAS  Google Scholar 

  59. Qi G, Ma L (2018) Experimental investigation of composite pyramidal truss core sandwich panels with lightweight inserts. Compos Struct 187:336–343

    Article  Google Scholar 

  60. Boermans L (2006) Research on sailplane aerodynamics at Delft University of Technology. Recent and present developments. Lecture organised by the Royal Aeronautical Societyís General Aviation Group, London

    Google Scholar 

  61. https://www.flight-mechanic.com/wings-part-three

  62. Krzyżak A, Mazur M, Gajewski M, Drozd K, Komorek A, Przybyłek P (2016) Sandwich structured composites for aeronautics: methods of manufacturing affecting some mechanical properties. Int J Aerosp Eng

    Google Scholar 

  63. https://www.flight-mechanic.com

  64. Ren L, Ma H, Shen Z, Wang Y (2019) Blast response of water-backed metallic sandwich panels subject to underwater explosion–experimental and numerical investigations. Compos Struct 209:79–92

    Article  Google Scholar 

  65. Liu T, Hou S, Nguyen X, Han X (2017) Energy absorption characteristics of sandwich structures with composite sheets and bio coconut core. Compos B Eng 114:328–338

    Article  CAS  Google Scholar 

  66. Kong CW, Nam GW, Jang YS, Yi YM (2014) Experimental strength of composite sandwich panels with cores made of aluminum honeycomb and foam. Adv Compos Mater 23(1):43–52

    Article  CAS  Google Scholar 

  67. Castanie B, Bouvet C, Ginot M (2020) Review of composite sandwich structure in aeronautic applications. Comp Part C Open Access: 100004

    Google Scholar 

  68. Wolff J, Brysch M, Hühne C (2018) Validity check of an analytical dimensioning approach for potted insert load introductions in honeycomb sandwich panels. Compos Struct 202:1195–1215

    Article  Google Scholar 

  69. Bunyawanichakul P, Castanié B, Barrau JJ (2005) Experimental and numerical analysis of inserts in sandwich structures. Appl Compos Mater 12(3):177–191

    Article  Google Scholar 

  70. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155

    Article  Google Scholar 

  71. Li T, Wang L (2017) Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Compos Struct 175:46–57

    Article  Google Scholar 

  72. Wang Z, Luan C, Liao G, Yao X, Fu J (2019) Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure. Comp Part B Eng 176:107215

    Google Scholar 

  73. Bonthu D, Bharath HS, Gururaja S, Prabhakar P, Doddamani M (2020) 3D printing of syntactic foam cored sandwich composite. Comp Part C Open Access 3:100068

    Google Scholar 

  74. Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos A Appl Sci Manuf 88:198–205

    Article  CAS  Google Scholar 

  75. Zhang K, Zeng T, Xu G, Cheng S, Yu S (2020) Mechanical properties of SiCp/SiC composite lattice core sandwich panels fabricated by 3D printing combined with precursor impregnation and pyrolysis. Comp Struct 240:112060

    Google Scholar 

  76. Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162

    Article  Google Scholar 

  77. Petrovic V, Vicente Haro Gonzalez J, JordáFerrando O, Delgado Gordillo J, Ramón Blasco Puchades J, PortolésGriñan L (2011) Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res 49(4):1061–1079

    Google Scholar 

  78. Silbernagel C (2018) Additive manufacturing 101–4: What is material jetting? Canada makers (Online). Available: http://canadamakes.ca/what-is-material-jetting/. Accessed 2019

  79. Sugiyama K, Matsuzaki R, Ueda M, Todoroki A, Hirano Y (2018) 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Compos A Appl Sci Manuf 113:114–121

    Article  CAS  Google Scholar 

  80. Sahu SK, Badgayan ND, Samanta S, Sahu D, Sreekanth PR (2018) Influence of cell size on out of plane stiffness and in-plane compliance character of the sandwich beam made with tunable PCTPE nylon honeycomb core and hybrid polymer nanocomposite skin. Int J Mech Sci 148:284–292

    Google Scholar 

  81. Zaharia SM, Enescu LA, Pop MA (2020) Mechanical performances of lightweight sandwich structures produced by material extrusion-based additive manufacturing. Polymers 12(8):1740

    Article  CAS  Google Scholar 

  82. Dikshit V, Yap YL, Goh GD, Yang H, Lim JC, Qi X, Yeong WY, Wei J (2016) Investigation of out of plane compressive strength of 3D printed sandwich composites. In: IOP conference series: materials science and engineering, vol 139, no 1. IOP Publishing, p. 012017

    Google Scholar 

  83. Sarvestani HY, Akbarzadeh AH, Mirbolghasemi A, Hermenean K (2018) 3D printed meta-sandwich structures: failure mechanism, energy absorption and multi-hit capability. Mater Des 160:179–193

    Article  Google Scholar 

  84. Hou S, Li T, Jia Z, Wang L (2018) Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact. Mater Des 160:1305–1321

    Article  CAS  Google Scholar 

  85. Safri SNA, Sultan MTH, Yidris N, Mustapha F (2014) Low velocity and high velocity impact test on composite materials–a review. Int J Eng Sci 3(9):50–60

    Google Scholar 

  86. Ozen İ, Çava K, Gedikli H, Alver Ü, Aslan M (2020) Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores. Thin-Walled Struct 156:106989

    Google Scholar 

  87. Bates SR, Farrow IR, Trask RS (2019) Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities. Mater Des 162:130–142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhari, C.J., Thakare, P.S., Sahu, S.K. (2022). 3D Printing of Composite Sandwich Structures for Aerospace Applications. In: Praveen Kumar, A., Sadasivuni, K.K., AlMangour, B., Abdul bin Majid, M.S. (eds) High-Performance Composite Structures. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-7377-1_3

Download citation

Publish with us

Policies and ethics