Skip to main content

Nanofertilizers and Their Applications

  • Chapter
  • First Online:
New Frontiers of Nanomaterials in Environmental Science

Abstract

Nanotechnology has proved its potential in bringing improvement in the agricultural sector via application of nanofertilizers, nanopesticides, and use of products such as nanosensors. Nanofertilizers facilitate slow and steady release of nutrients thereby increasing productivity of the soil. They enhance nutrient use efficiency and reduce the loss of nutrients. Enhancement in the photosynthetic capacity in plants caused due to increased availability of nutrients leads to production of high yield and dry matter. Use of nanofertilizers proves advantageous because it reduces frequency of application of chemical fertilizers and hence soil toxicity. Nanotechnology can thus prove as a technique with immense potential for improving agricultural productivity and help us in achieving sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abobatta WF (2018) Nanotechnology application in agriculture. Acta Sci Agric 2:99–102

    Google Scholar 

  • Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117

    Google Scholar 

  • Adhikari T, Biswas AK, Kundu S (2010) Nanofertilizer—a new dimension in agriculture. Ind J Fertil 6:22–24

    Google Scholar 

  • Boutchuen A, Zimmerman D, Aich N, Masud AM, Arabshahi A, Palchoudhury S (2019) Increased plant growth with hematite nanoparticle fertilizer drop and determining nanoparticle uptake in plants using multimodal approach. J Nanomaterials 6890572, 11 pages

    Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P et al (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650

    Article  CAS  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612

    Article  CAS  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Chinnamuthu CR, Boopati PM (2017) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Da Costa MV, Prabhat KS (2015) Influence of titanium dioxide nanoparticles on the photosynthetic and biochemical processes in Oryza sativa. Int J Recent Sci Res 6:2445–2451

    Google Scholar 

  • Das CK, Srivastava G, Dubey A, Roy M, Jain S, Sethy NK et al (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol Environ Eng 1:2

    Article  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  Google Scholar 

  • Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9:271–278

    Article  CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5

    Article  CAS  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Natural Sci Nanosci Nanotechnol 3:033002

    Article  CAS  Google Scholar 

  • Ditta A, Arsha M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Nanotechnology and plant sciences. Springer International Publishing, Cham, pp 55–75

    Chapter  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Elemike E, Uzoh IM, Onwudiwe DC, Babalola OO (2019) The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci 9:499

    Article  CAS  Google Scholar 

  • Elfeky SA, Mohammed MA, Khater MS, Osman YAH (2013) Effect of magnetite nano-fertilizer on growth and yield of Ocimum basilicum L. Int J Phytomed Related Indust 463:2051–4263

    Google Scholar 

  • Gao FQ, Liu C, Qu CX, Zheng L, Yang F, Su MG, Hong FH (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals 21:211–217

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  Google Scholar 

  • Giroto AS, Guimaraes GG, Foschini M, Ribeiro C (2017) Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep 7:46032

    Article  CAS  Google Scholar 

  • He D, Bligh MW, Waite TD (2013) Effects of aggregate structure on the dissolution kinetics of citrate-stabilised silver nanoparticles. Environ Sci Technol 47:9148–9156

    Article  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  Google Scholar 

  • Huang Y, Zhao L, Keller AA (2017) Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol 51:9774–9783

    Article  CAS  Google Scholar 

  • Hussein MM, Abou-Baker NH (2018) The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Soc Open Sci 5:171809

    Article  CAS  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016) Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agricult Slovenica 107:265–276

    Article  Google Scholar 

  • Janmohammadi M, Pornour N, Javanmard A, Sabaghnia N (2017) Effects of bio-organic, conventional and nanofertilizers on growth, yield and quality of potato in cold steppe. Botanica Lithuanica 22:133–144

    Article  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. A nanoforum report. Institute of Nanotechnology. www.nanoforum.org

  • Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G (2018) Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J Sci Food Agric 98:3148–3160

    CAS  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnol 13:677–684

    Article  CAS  Google Scholar 

  • Kandasamy S, Prema RS (2015) Methods of synthesis of nano particles and its applications. J Chem Pharm Res 7:278–285

    CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  Google Scholar 

  • Khot LR, Sankarana S, Majaa JM, Ehsania R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K et al (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Microbiology 40:53–58.12

    CAS  Google Scholar 

  • Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:6

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Liu M, Liang R, Liu F, Niu A (2006) Synthesis of a slow release and superabsorbent nitrogen fertilizer and its properties. Polym Adv Tech 17:430–438

    Article  CAS  Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–171

    CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 1:1–7

    Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263

    Article  CAS  Google Scholar 

  • Manjunatha JSB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. Farm Sci 29:1–13

    Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE et al (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Pariona N, Martinez AI, Hdz-García HM, Cruz LA, Hernandez-Valdes A (2017) Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J Biol Sci 24:1547–1554

    Article  CAS  Google Scholar 

  • Parveen A, Mazhari BBZ, Rao S (2016) Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microbial Technol 95:107–111

    Article  CAS  Google Scholar 

  • Ponce-García CO, Soto-Parra JM, Sánchez E, Muñoz-Márquez E, Piña-Ramírez FJ, Flores-Córdova MA, Pérez-Leal R, Yáñez Muñoz RM (2019) Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agron 9:128

    Article  CAS  Google Scholar 

  • Pradhan P, Alonso JC, Biza M (2012) Photocatalytic performance of ZnO: Al films under different light sources. Int J Photoenergy:780462, 7 pages

    Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013a) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:9

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK et al (2013b) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Google Scholar 

  • Raliya R et al (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Ratnikova TA, Podila R, Rao AM, Taylor AG (2015) Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci World J 2015:419215, 9 pages

    Article  CAS  Google Scholar 

  • Remya VR, Abitha VK, Rajput PS et al (2017) Silver nanoparticles green synthesis: a mini review. Chem Int 3:165.4

    Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  Google Scholar 

  • Sahaja D, Kadiri L (2016) A review on impact of nanoparticles on plant growth and development. Adv Life Sci 5:16–21

    Google Scholar 

  • Scott N, Chen H (2013) Nano-scale science and engineering for agriculture and food systems. Ind Biotechnol 9:17–18

    Article  Google Scholar 

  • Selva PP, Balakrishna N (2017) A review of nano fertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6:3117–3133

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seed. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429

    Article  CAS  Google Scholar 

  • Singh A, Bhati A, Gunture TKM, Sonkar SK (2018) Nanocarbons in agricultural plants: can be a potential nanofertilizer? In: Hussain CM, Mishra AK (eds) Nanotechnology in environmental science. Wiley-VCH, Hoboken

    Google Scholar 

  • Siva GV, Benita LFJ (2016) Iron oxide nanoparticles promotes agronomic traits of ginger (Zingiber officinale Rosc.). Int J Adv Res Biol Sci 3:230–237

    CAS  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham

    Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nanoagriculture—carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:274–275

    CAS  Google Scholar 

  • Tarafdar JC, Agrawal A, Raliya R, Kumar P, Burman U et al (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci Eng Med 4:324–328

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorus nanoparticles from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore R (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289

    Article  CAS  Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:617

    Article  CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012a) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  Google Scholar 

  • Yassen A, Abdallah E, Gaballah MS, Zaghlo S (2017) Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). Int J Agric Res 12:130–135

    Article  CAS  Google Scholar 

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141

    Article  CAS  Google Scholar 

  • Zhang Q, Han L, Jing H, Blom DA, Lin Y, Xin HL et al (2016) Facet control of gold nanorods. ACS Nano 10:2960–2974

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agri Food Chem 62:2752–2759

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhir, B. (2021). Nanofertilizers and Their Applications. In: Kumar, R., Kumar, R., Kaur, G. (eds) New Frontiers of Nanomaterials in Environmental Science. Springer, Singapore. https://doi.org/10.1007/978-981-15-9239-3_10

Download citation

Publish with us

Policies and ethics