Skip to main content

Histone Mutations and Bone Cancers

  • Chapter
  • First Online:
Histone Mutations and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1283))

Abstract

Primary bone tumors are rare cancers that cause significant morbidity and mortality. The recent identification of recurrent mutations in histone genes H3F3A and H3F3B within specific bone cancers, namely, chondroblastomas and giant cell tumors of bone (GCTB), has provided insights into the cellular and molecular origins of these neoplasms and enhanced understanding of how histone variants control chromatin function. Somatic mutations in H3F3A and H3F3B produce oncohistones, H3.3G34W and H3.3K36M, in more than nine of ten GCTB and chondroblastomas, respectively. Incorporation of the mutant histones into nucleosomes inhibits histone methyltransferases NSD2 and SETD2 to alter the chromatin landscape and change gene expression patterns that control cell proliferation, survival, and differentiation, as well as DNA repair and chromosome stability. The discovery of these histone mutations has facilitated more accurate diagnoses of these diseases and stratification of malignant tumors from benign tumors so that appropriate care can be delivered. The broad-scale epigenomic and transcriptomic changes that arise from incorporation of mutant histones into chromatin provide opportunities to develop new and disease-specific therapies. In this chapter, we review how mutant histones inhibit SETD2 and NSD2 function in bone tumors and discuss how this information could lead to better treatments for these cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAF-1:

Chromatin assembly factor 1

DRD2:

Dopamine receptor D2

GCTB:

Giant cell tumor of bone

H3:

Histone 3

HIRA:

Histone regulator A

HMTase:

Histone methyltransferase

K:

Lysine

KDM:

Lysine demethylase

KMT:

Lysine methylation transferase

Me:

Methyl group

MMSET:

Multiple myeloma SET domain

NSD:

Nuclear receptor SET domain-containing

PRC2:

Polycomb-repressive complex 2

PRMT:

Protein arginine methyltransferases

PTM:

Posttranslational modification

RRM2:

Ribonucleotide reductase regulatory subunit M2

SETD:

Su(var)3-9, Enhancer of Zeste, Trithorax domain-containing

SRI:

Set2 Rpb1 interacting domain

WHSC1:

Wolf-Hirschhorn syndrome gene (aka, NSD2)

References

  1. Sankar S, Lessnick SL (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet 204(7):351–365

    Article  CAS  Google Scholar 

  2. Franchi A et al (2016) Histone 3.3 mutations in giant cell tumor and giant cell-rich sarcomas of bone. Lab Invest 96:17a–18a

    Google Scholar 

  3. Behjati S et al (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–U105

    Article  CAS  Google Scholar 

  4. Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648

    Article  CAS  Google Scholar 

  5. Aghajanian P, Mohan S (2018) The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 6:19

    Article  Google Scholar 

  6. Siclari VA, Guise TA, Chirgwin JM (2006) Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev 25(4):621–633

    Article  CAS  Google Scholar 

  7. Kadyrova LY, Blanko ER, Kadyrov FA (2013) Human CAF-1-dependent nucleosome assembly in a defined system. Cell Cycle 12(20):3286–3297

    Article  CAS  Google Scholar 

  8. Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20(1):14–22

    Article  CAS  Google Scholar 

  9. Mohammad F, Helin K (2017) Oncohistones: drivers of pediatric cancers. Genes Dev 31(23-24):2313–2324

    Article  CAS  Google Scholar 

  10. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  Google Scholar 

  11. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90

    Article  CAS  Google Scholar 

  12. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643

    Article  CAS  Google Scholar 

  13. Xu GG et al (2018) Signaling specificity in the c-di-GMP-dependent network regulating antibiotic synthesis in Lysobacter. Nucleic Acids Res 46(18):9276–9288

    Article  CAS  Google Scholar 

  14. Serefidou M, Venkatasubramani AV, Imhof A (2019) The impact of one carbon metabolism on histone methylation. Front Genet 10:764

    Article  CAS  Google Scholar 

  15. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357

    Article  CAS  Google Scholar 

  16. Joh RI et al (2014) Regulation of histone methylation by noncoding RNAs. Biochim Biophys Acta-Gene Regul Mech 1839(12):1385–1394

    Article  CAS  Google Scholar 

  17. Benveniste D et al (2014) Transcription factor binding predicts histone modifications in human cell lines. Proc Natl Acad Sci U S A 111(37):13367–13372

    Article  CAS  Google Scholar 

  18. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  Google Scholar 

  19. Bennett RL et al (2017) The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer. Cold Spring Harb Perspect Med 7(6):a026708

    Article  Google Scholar 

  20. Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13(2):115–126

    Article  CAS  Google Scholar 

  21. Fang D et al (2016) The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352(6291):1344–1348

    Article  CAS  Google Scholar 

  22. Lu C et al (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352(6287):844–849

    Article  CAS  Google Scholar 

  23. Kuo AJ et al (2011) NSD2 links Dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44(4):609–620

    Article  CAS  Google Scholar 

  24. Chesi M et al (1998) The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92(9):3025–3034

    Article  CAS  Google Scholar 

  25. Martinez-Garcia E et al (2011) The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117(1):211–220

    Article  CAS  Google Scholar 

  26. Roy DM, Walsh LA, Chan TA (2014) Driver mutations of cancer epigenomes. Protein Cell 5(4):265–296

    Article  CAS  Google Scholar 

  27. Sun XJ et al (2005) Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280(42):35261–35271

    Article  CAS  Google Scholar 

  28. Mohammad F et al (2017) EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 23(4):483

    Article  CAS  Google Scholar 

  29. Macias MJ et al (1996) Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382(6592):646–649

    Article  CAS  Google Scholar 

  30. Lu PJ et al (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283(5406):1325–1328

    Article  CAS  Google Scholar 

  31. Sze CI et al (2004) Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro – a potential role in Alzheimer’s disease. J Biol Chem 279(29):30498–30506

    Article  CAS  Google Scholar 

  32. Yendamuri S et al (2003) WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Res 63(4):878–881

    CAS  Google Scholar 

  33. Li J et al (2016) SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 7(31):50719–50734

    Article  Google Scholar 

  34. Kizer KO et al (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25(8):3305–3316

    Article  CAS  Google Scholar 

  35. McDaniel SL, Strahl BD (2017) Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 74(18):3317–3334

    Article  CAS  Google Scholar 

  36. Newbold RF, Mokbel K (2010) Evidence for a tumour suppressor function of SETD2 in human breast cancer: a new hypothesis. Anticancer Res 30(9):3309–3311

    CAS  Google Scholar 

  37. Duns G et al (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70(11):4287–4291

    Article  CAS  Google Scholar 

  38. Linne H et al (2017) Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression. Oncotarget 8(37):61890–61900

    Article  Google Scholar 

  39. Wan YCE, Liu J, Chan KM (2018) Histone H3 mutations in cancer. Curr Pharmacol Rep 4(4):292–300

    Article  CAS  Google Scholar 

  40. Yang S et al (2016) Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes Dev 30(14):1611–1616

    Article  CAS  Google Scholar 

  41. Palmerini E et al (2019) Malignancy in giant cell tumor of bone: a review of the literature. Technol Cancer Res Treat 18:1533033819840000

    Article  Google Scholar 

  42. Domovitov SV, Healey JH (2010) Primary malignant Giant-cell tumor of bone has high survival rate. Ann Surg Oncol 17(3):694–701

    Article  Google Scholar 

  43. Behjati S et al (2014) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone (vol 45, pg 1479, 2013). Nat Genet 46(3):316–316

    Article  CAS  Google Scholar 

  44. Wojcik J, Cooper K (2017) Epigenetic alterations in bone and soft tissue tumors. Adv Anat Pathol 24(6):362–371

    Article  CAS  Google Scholar 

  45. Shi L et al (2018) Histone H3.3 G34 mutations Alter histone H3K36 and H3K27 methylation in cis. J Mol Biol 430(11):1562–1565

    Article  CAS  Google Scholar 

  46. Lim J et al (2017) The histone variant H3.3 G34W substitution in giant cell tumor of the bone link chromatin and RNA processing. Sci Rep 7(1):13459

    Article  Google Scholar 

  47. Ottaviani G, Jaffe N (2009) The epidemiology of osteosarcoma. Cancer Treat Res 152:3–13

    Article  Google Scholar 

  48. Koelsche C et al (2017) Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clin Sarcoma Res 7:9

    Article  Google Scholar 

  49. Pfister SX et al (2015) Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28(5):557–568

    Article  CAS  Google Scholar 

  50. Chan KM et al (2013) Neuro-Oncology 15:176–177

    Google Scholar 

  51. Ralff MD et al (2017) ONC201: a new treatment option being tested clinically for recurrent glioblastoma. Transl Cancer Res 6:S239–S243

    Article  Google Scholar 

Download references

Disclosures

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Westendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, E.L., Westendorf, J.J. (2021). Histone Mutations and Bone Cancers. In: Fang, D., Han, J. (eds) Histone Mutations and Cancer. Advances in Experimental Medicine and Biology, vol 1283. Springer, Singapore. https://doi.org/10.1007/978-981-15-8104-5_4

Download citation

Publish with us

Policies and ethics