Skip to main content

Immobilization of Biomolecules on Plasma-Functionalized Surfaces for Biomedical Applications

  • Chapter
  • First Online:
Immobilization Strategies

Abstract

Immobilization of biomolecules using plasma-tailored surfaces of material has caught attention amongst many interdisciplinary scientists. The non-thermal plasma surface modification technique has evolved itself as a very promising candidate for biomedical applications. The daunting challenge in biocompatibility with respect to surface chemistry alterations is its intervention with host response in expected biological functions. Distinct features of non-thermal plasma such as dry state process, non-thermolability, presence of energetic reactive species, low cost, and rapid and controlled functionalization have been chosen over conventional surface modification techniques. Advances in immobilization of biomolecules using non-thermal plasma surface modification techniques have paved us the way to achieve the design of biologically inspired materials which can successfully mimic complex biological processes. Various plasma types in different modes such as deposition through chemical attachments (like hydrophilic interaction, ionic or covalent bonding) and graft polymerization have been utilized to rationalize the immobilization applications. Physical entrapment in immobilization applications on various surfaces is highlighted with respect to enzymes and various polymeric or particle surfaces.  In this chapter, we have mainly discussed the latest advancements related to immobilization of enzymes, protein and other biomolecules on to the non-thermal plasma-modified surfaces. The important aspect of plasma surface modification is to understand the interaction between plasma-functionalized surface and binding molecules for immobilization applications. Different plasma processes in various modes such as graft polymerization and deposition through chemical attachments (like covalent bonding, ionic or hydrophilic interaction) are discussed in this chapter within the scope of immobilization. This chapter also enlightens about the fundamental understanding on the development of biocompatible surfaces on various polymeric substrates including 3D scaffolds by the use of non-thermal low-pressure and atmospheric pressure plasma-assisted polymerization, which have been subsequently used for immobilization of various biomolecules for advanced biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAC:

Acrylic acid

ADSC:

Adipose-derived stem cell

AEMA:

2-Amino-ethyl methacrylate

AFM:

Atomic force microscopy

Ar:

Argon

ATR-FTIR:

Attenuated total reflectance -Fourier transform infrared

BOPP:

Biaxially oriented polypropylene

CA:

Contact angle

CE:

Cornea epithelial

CO2:

Carbon dioxide

DBD:

Dielectric barrier discharge

DC:

Direct current

FEP:

Poly(tetrafluoroethylene-co-hexafluoropropylene)

HCAEC:

Human coronary artery endothelial cells

HDF:

Human dermal fibroblast

HEP:

Heparin

hTM:

Human thrombomodulin

LDPE:

Low-density polyethylene

MW:

Microwave

N2:

Nitrogen

NH3:

Ammonia

O2:

Oxygen

OSC:

O-stearoyl-chitosan

PCL:

Poly(ε-caprolactone)

PDMS:

Polydimethylsiloxane

PEG:

Poly(ethylene glycol)

PEGMA:

Poly(ethylene glycol) methacrylate

PET:

Polyethylene terephthalate

PLGA:

Poly(lactide-co-glycolide)

PLLA:

Poly-L-lactic acid

PNIPAM:

Poly(N-isopropylacrylamide)

PSF:

Polysulfone

PTFE:

Poly(tetrafluoroethylene)

PU:

Polyurethane

ROB:

Rat embryo osteoblastic

ROS:

Rat osteosarcoma

SEM:

Scanning electron microscopy

SR:

Silicon rubber

UV:

Ultraviolet

PEO:

Polyethylene oxide

XPS:

X-ray photoelectron spectroscopy

References

  • Abbas A, Vercaigne-Marko D, Supiot P, Bocquet B, Vivien C, Guillochon D (2009) Covalent attachment of trypsin on plasma polymerized allylamine. Colloids Surf B 73:315–324

    Article  CAS  Google Scholar 

  • Aflori M, Drobota M, Dimitriu DG, Stoica I, Simionescu B, Harabagiu V (2013) Collagen immobilization on polyethylene terephthalate surface after helium plasma treatment. Mater Sci Eng, B 178:1303–1310

    Article  CAS  Google Scholar 

  • Alexander H, Brunski HB, Cooper SL, Hench LL, Hergenrother RW, Hoffman AS, Kohn J, Langer R, Peppas NA, Ratner BD, Shalaby SW, Visser SA, Yannas IV (1996) Classes of materials used in medicine. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, vol 2. Academic Press, Publication date: 20 May 1997. ISBN: 9780125824613, https://doi.org/10.1016/B978-0-08-050014-0.50007-9.

  • Alexandrov SE, Hitchman ML (2005) Chemical vapor deposition enhanced by atmospheric pressure non-thermal non-equilibrium plasmas. Chem Vap Deposition 11:457–468

    Article  CAS  Google Scholar 

  • An YH, Friedman RJ (1997) Laboratory methods for studies of bacterial adhesion. J Microbiol Methods 30(2):141–152

    Article  CAS  Google Scholar 

  • Arefi-Khonsari F, Tatoulian M (2008) Plasma processing of polymers by a low-frequency discharge with asymmetrical configuration of electrode. In : D’Agostino R, Favia P, Kawai Y, Ikegami H, Sato N, Arefi-Khonsari F (eds) Advanced plasma technology. Wiley VCH Publication, Germany, publication date: 12 Dec 2007. ISBN: 9783527405916, https://doi.org/10.1002/9783527622184.ch8

  • Aucoin L, Griffith CM, Pleizier G, Deslandes Y, Sheardown H (2002) Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J Biomater Sci Polym Edn 13(4):447–462

    Article  CAS  Google Scholar 

  • Ayati-Najafabadi SA, Keshvari H, Ganji Y, Tahriri M, Ashuri M (2012) Chitosan/heparin surface modified polyacrylic acid grafted polyurethane film by two step plasma treatment. Surf Eng 28(9):710–714

    Article  CAS  Google Scholar 

  • Bahrami N, Khorasani SN, Mahdavi H, Ghiaci M, Mokhtari R (2019) Low-pressure plasma surface modification of polyurethane films with chitosan and collagen biomolecules. J Appl Polym Sci 136:47567

    Article  CAS  Google Scholar 

  • BaqueyC PalumboF, Porte-DurrieuMC LegeayG, TressaudA D’AgostinoR (1999) Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface. Nucl Instrum Methods Phys Res Sect B 151:255–262

    Article  Google Scholar 

  • Bax DV, McKenzie DR, Weiss AS, Bilek MMM (2010) The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials 31:2526–2534

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Xu H, Deshmukh RR, Timmons RB, Nguyen KT (2010) Surface chemistry and polymer film thickness effects on endothelial cell adhesion and proliferation. J Biomed Mater Res A 94(2):640–648

    Google Scholar 

  • Biederman H, Osada Y (1990) Plasma chemistry of polymers. In: Biederman H (ed) Advances in polymer science. Springer-Verlag, Berlin. ISBN: 978-3-540-52159-4. https://doi.org/10.1007/3-540-52159-3_6

  • Bisson I, Kosinski M, Ruault S, Gupta B, Hilborn J, Wurm F, Frey P (2002) Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials 23:3149–3158

    Article  CAS  Google Scholar 

  • Carlisle ES, Mariappan MR, Nelson KD, Thomes BE, Timmons RB, Constantinescu A, Eberhart RC, Bankey PE (2000) Enhancing hepatocyte adhesion by pulsed plasma deposition and polyethylene glycol coupling. Tissue Eng 6(1):45–52

    Article  CAS  Google Scholar 

  • Chandy T, Das GS, Wilson RF, Rao GHR (2000) Use of plasma glow for surface engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular Prosthesis. Biomaterials 21:699–712

    Article  CAS  Google Scholar 

  • Cheng Z, Teoh SH (2004) Surface modification of ultra-thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials 25:1991–2001

    Article  CAS  Google Scholar 

  • Chen JP, Kuo CY, Lee WL (2012) Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl Surf Sci 262:95–101

    Article  CAS  Google Scholar 

  • Chen Y, Yi J, Gao Q, Zhou X, Luo Y, Liu P (2013) Surface performance and cytocompatibility evaluation of acrylic acid-mediated carboxymethyl chitosan coating on poly(tetrafluoroethylene-co- hexafluoropropylene). Plasma Chem Plasma Process 33:1153–1165

    Article  CAS  Google Scholar 

  • Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5–6):143–206

    Article  Google Scholar 

  • D’Agostino R, Favia P, Oehr C, Wertheimer MR (2005) Low-temperature plasma processing of materials: past, present, and future. Plasma Processes Polym 2(1):7–15

    Article  CAS  Google Scholar 

  • Declercq HA, Desmet T, Berneel EEM, Dubruel P, Maria J (2013) Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-e-caprolactone scaffolds in osteogenic tissue engineering. Acta Biomater 9:7699–7708

    Article  CAS  Google Scholar 

  • Degoutin S, Jimenez M, Casetta M, Bellayer S, Chai F, Blanchemain N, Neut C, Kacem I, Traisnel M, Martel B (2012) Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles. Biomed Mater 7(3):035001

    Article  CAS  Google Scholar 

  • Ding Z, Chen J, Gao S, Chang J, Zhang J, Kang ET (2004) Immobilization of chitosan onto poly-l-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials 25(6):1059–1067

    Article  CAS  Google Scholar 

  • Duan Y, Wang Z, Yan W, Wang S, Zhang S, Jia J (2007) Preparation of collagen-coated electrospunnanofibers by remote plasma treatment and their biological properties. J Biomater Sci Polym Edn 18(9):1153–1164

    Article  CAS  Google Scholar 

  • Dupont KM, Boerckel JD, Stevens HY, Diab T, Kolambkar YM, Takahata M, Schwarz EM, Guldberg RE (2012) Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res 347:575–588

    Article  CAS  Google Scholar 

  • Favia P, Palumbo F, D’ Agostino R, Lamponi S, Magnini A, Barbucci R (1998) Immobilization of heparin and highly-sulphated hyaluronic acid on to the plasma-treated polyethylene. Plasmas Polym 3:77–96

    Article  CAS  Google Scholar 

  • Friedman M, Walsh G (2002) High performance films: review of new materials and trends. Polym Eng Sci 42:1756–1788

    Article  CAS  Google Scholar 

  • Gao Q, Chen Y, Wei Y, Wang X, Luo Y (2013) Heparin-grafted poly(tetrafluoroethylene-cohexafluoropropylene) film with highly effective blood compatibility via an esterification reaction. Surf Coat Technol 228:S126–S130

    Article  CAS  Google Scholar 

  • Gentile P, Ghione C, Tonda-Turo C, Kalaskarc DM (2015) Peptide functionalisation of nanocomposite polymer for bone tissue engineering using plasma surface polymerisation. RSC Adv 5:80039–80047

    Article  CAS  Google Scholar 

  • Gogolewski S, Varlet PM, Dillon JG (1996) Sterility, mechanical properties and molecular stability of polylactic internal-fixation devices treated with low-temperature plasmas. J Biomed Mater Res 32:227–235

    Article  CAS  Google Scholar 

  • Gonzalez-Paz RJ, Ferreira AM, Mattu C, Boccafoschi F, Lligadas G, Ronda JC, Galia M, Cadiz V, Ciardelli G (2013) Cytocompatible polyurethanes from fatty acids through covalent immobilization of collagen. React Funct Polym 73:690–697

    Article  CAS  Google Scholar 

  • Goossens O, Dekempeneer E, Vangeneugden D, Van de Leest R, Leys C (2001) Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation. Surf Coat Technol 142–144:474–481

    Article  Google Scholar 

  • Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23:863–871

    Article  CAS  Google Scholar 

  • Hersel U, Dahman C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415

    Article  CAS  Google Scholar 

  • Heyse P, Dams R, Paulussen S, Houthoofd K, Janssen K, Jacobs PA, Sels BF (2007) Dielectric barrier discharge at atmospheric pressure as a tool to deposit versatile organic coatings at moderate power input. Plasma Processes Polym 4(2):145–157

    Article  CAS  Google Scholar 

  • He W, Ma ZW, Yong T, Teo WE, Ramakrishna S (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26:7606–7615

    Article  CAS  Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48(3):424–434

    Article  CAS  Google Scholar 

  • Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, Wang DM (2006) Promotion of Cell Affinity of Porous PLLA Scaffolds by Immobilization of RGD Peptides via plasma treatment. Macromol Biosci 6:90–98

    Article  CAS  Google Scholar 

  • Huang CL, Lin YY, Liao JD (2006) Immobilization of chitosan on the plasma-activated poly-L-lactic acid film surface using evaporated acrylic acid as the intermediate. Adv Sci Technol 49:197–202

    Article  CAS  Google Scholar 

  • Huang YC, Huang CC, Huang YY, Chen KS (2007) Surface modification and characterization of chitosan or plga membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res Part 82A: 842–851

    Google Scholar 

  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026–4034

    Article  CAS  Google Scholar 

  • Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C (2012) Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chem Plasma Process 32:1039–1073

    Article  CAS  Google Scholar 

  • Jin J, Jiang W, Shi Q, Zhao J, Yin J, Stagnaro P (2012) Fabrication of PP-g-PEGMA-gheparin and its hemocompatibility: from protein adsorption to anticoagulant tendency. Appl Surf Sci 258:5841–5849

    Article  CAS  Google Scholar 

  • Juarez-Moreno JA, Avila-Ortega A, Oliva AI, Aviles F, Cauich-Rodriguez JV (2015) Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Appl Surf Sci 349:763–773

    Article  CAS  Google Scholar 

  • Jung HJ, Ahn KD, Han DK (2005) Surface characteristics and fibroblast adhesion behavior of RGD-immobilized biodegradable PLLA films. Macromol Res 13(5):446–452

    Article  CAS  Google Scholar 

  • Jung HJ, Park K, Kim JJ, Lee JH, Han KO, Han DK (2008) Effect of RGD-immobilized dual-pore poly(L-Lactic Acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Artif Organs 32(12):981–989

    Article  CAS  Google Scholar 

  • Kara F, Aksoy EA, Yuksekdag Z, Aksoy S, Hasirci N (2015) Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization. Appl Surf Sci 357:1692–1702

    Article  CAS  Google Scholar 

  • Keranov I, Vladkova T, Minchev M, Kostadinova A, Altankov G (2008) Preparation, characterization, and cellular interactions of collagen-immobilized PDMS surfaces. J Appl Polym Sci 110:321–330

    Article  CAS  Google Scholar 

  • Kerri JP, Stuart KW, Jarrell BE (1989) Enhanced adherence of human adult endothelial cells to plasma discharge modified polyethylene terephthalate. J Biomed Mater Res 23:1131–1147

    Article  Google Scholar 

  • Keselowsky BG, Collard DM, Garcia AJ (2004) Surface chemistry modulates focal adhesion composition and signals through changes in integrin binding. Biomaterials 25:5947–5954

    Article  CAS  Google Scholar 

  • Kim YJ, Kang IK, Huh MW, Yoon SC (2000) Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 21(2):121–130

    Article  CAS  Google Scholar 

  • Kim BH, Myung SW, Jung SC, Ko YM (2013) Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds. Jpn J Appl Phys 52(11S): 11NF01

    Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    Article  CAS  Google Scholar 

  • Kozlowska J, Sionkowska A, Skopinska-Wisniewska J, Piechowicz K (2015) Northern pike (Esoxlucius) collagen: Extraction, characterization and potential application. Int J Biol Macromol 81:220–227

    Article  CAS  Google Scholar 

  • Kreider A, Richter K, Sell S, Fenske M, Tornow C, Stenzel V, Grunwald I (2013) Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes. Appl Surf Sci 273:562–569

    Article  CAS  Google Scholar 

  • Kumar A, Tripathi A (2012) Biopolymeric scaffolds for tissue engineering. In: Tiwari A, Srivastava RB (eds) Biotechnology in biopolymers developments, applications and challenging areas. i-Smithers Repra Publication Ltd. United Kingdom, pp 233–285

    Google Scholar 

  • Lee SD, Kao CY (1996) Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterial. Biomaterials 17:1599–1608

    Article  CAS  Google Scholar 

  • Li YH, Huang YD (2007) The study of collagen immobilization on polyurethane by oxygen plasma treatment to enhance cell adhesion and growth. Surf Coat Technol 201:5124–5127

    Article  CAS  Google Scholar 

  • Li R, Wang H, Wang W, Ye Y (2013) Immobilization of heparin on the surface of polypropylene non-woven fabric for improvement of the hydrophilicity and blood compatibility. J Biomater Sci Polym Edn 24(1):15–30

    Article  CAS  Google Scholar 

  • Li P, Li L, Wang W, Jin W, Liu X, Yeung KWK, Chu PK (2014) Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating. Appl Surf Sci 297:109–115

    Article  CAS  Google Scholar 

  • Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K (2007) Gas plasma: medical uses and developments in wound care. Plasma Processes Polym 7(3–4):194–211

    Google Scholar 

  • Lopez-Garcia J, Bilek F, Lehocky M, Junkar I, Mozetic M, Sowe M (2013) Enhanced printability of polyethylene through air plasma treatment. Vacuum 95:43–49

    Article  CAS  Google Scholar 

  • Lopez LC, Gristina TR, Ceccone G, Rossi F, Favia P, D’agostino R, (2005) Immobilization of RGD peptides on stable plasma-deposited acrylic acid coatings for biomedical devices. Surf Coat Technol 200:1000–1004

    Article  CAS  Google Scholar 

  • Mahmoodi M, Zamanifard M, Safarzadeh M, Bonakdar S (2017) In vitro evaluation of collagen immobilization on polytetrafluoroethylene through NH3 plasma treatment to enhance endothelial cell adhesion and growth. Bio Med Mater Eng 28:489–501

    Article  CAS  Google Scholar 

  • Mao C, Yuan J, Mei H, Zhu A, Shen J, Lin S (2004) Introduction of photocrosslinkable chitosan to polyethylene film by radiation grafting and its blood compatibility. Mater Sci Eng C 24:479–485

    Article  CAS  Google Scholar 

  • Martin Y, Boutin D, Vermette P (2007) Study of the effect of process parameters for n-heptylamine plasma polymerization on final layer properties. Thin Solid Films 515:6844–6852

    Article  CAS  Google Scholar 

  • Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C, Payen E (2010) Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Appl Surf Sci 257: 372–380

    Google Scholar 

  • Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C, Payen E (2010) Influence of discharge atmosphere on the ageing behaviour of plasma-treated polylactic acid. Plasma Chem Plasma Process 30:525–536

    Article  CAS  Google Scholar 

  • Morshed MN, Behary N, Bouazizi N, Guan J, Chen G, Nierstrasz V (2019) Surface modification of polyester fabric using plasma-dendrimer for robust immobilization of glucose oxidase enzyme. Sci Rep 9:15730

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2005) Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Lee K, Kaplan D (eds) Tissue engineering I. Advances in biochemical engineering/biotechnology. Springer, Print publication date: 25 Oct 2005. ISBN 978-3-540-31944-3, https://doi.org/10.1007/b137240

  • Narayanan PV (1994) Surface functionalization by RF plasma treatment of polymers for immobilization of bioactive-molecules. J Biomater Sci Polym Edn 6(3):181–193

    CAS  Google Scholar 

  • Pandiyaraj KN, Selvarajan V, Rhee YH, Kim HW, Shah SI (2009) Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties. Mater Sci Eng C 29(3):796–805

    Article  CAS  Google Scholar 

  • Pandiyaraj KN, Ferrari AM, BotelhodoRego AM, Deshmukh RR, Su PG, Halleluyah M, Halim AS (2015) Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications. Appl Surf Sci 328: 1–12

    Google Scholar 

  • Pandiyaraj KN, Ram Kumar MC, Arun Kumar A, Padmanabhan PVA, Deshmukh RR, Bah M, Shah SI, Su PG, Halim AS (2016) Tailoring the surface properties of polypropylene films through cold atmospheric pressure (CAPP) plasma assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity. Appl Surf Sci 370:545–556

    Article  CAS  Google Scholar 

  • Pantoja M, Encinas N, Abenojar J, Martínez MA (2013) Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion. Appl Surf Sci 280:850–857

    Article  CAS  Google Scholar 

  • Park YO, Myung SW, Kook MS, Jung SC, KimBH, (2016) Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds. J Nanosci Nanotechnol 16:1415–1419

    Article  CAS  Google Scholar 

  • Pence JC, Gonnerman EA, Bailey RC, Harley BA (2014) Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials. Biomater Sci 2:1296–1304

    Article  CAS  Google Scholar 

  • Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  CAS  Google Scholar 

  • Popelka A, Novak I, Lehocky M, Junkar I, Mozetic M, Kleinova A, Janigova I, Slouf M, Bilek F, Chodak I (2002) A new route for chitosan immobilization onto polyethylene surface. Carbohyd Polym 90(4):1501–1508

    Article  CAS  Google Scholar 

  • Pratt KJ, Williams SK, Jarrell BE (1989) Enhanced adherence of human adult endothelial cells to plasma discharge modified polyethylene terephthalate. J Biomed Mater Res 23(10):1131–1147

    Article  CAS  Google Scholar 

  • Pu FR, Williams RL, Markkula TK, Hunt J (2002) Expression of leukocyte–endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro. Biomaterials 23:4705–4718

    Article  CAS  Google Scholar 

  • Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2(2):186–201

    Article  CAS  Google Scholar 

  • Robinson DE, Al-Bataineh SA, Farrugia BL, Michelmore A, Cowin AJ, Dargaville TR, Short RD, Smith LE, Whittle JD (2016) Plasma polymer and biomolecule modification of 3D scaffolds for tissue engineering. Plasma Processes Polym 13:678–689

    Article  CAS  Google Scholar 

  • Rossini P, Colpo P, Ceccone G, Jandt KD, Rossi F (2003) Surfaces engineering of polymeric films for biomedical applications. Mater Sci Eng C 23(3):353–358

    Article  Google Scholar 

  • Sadeghi AR, Nokhasteh S, Molavi A, Khorsand-Ghayeni M, Naderi-Meshkin H, Mahdizadeh A (2016) Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes. Mater Sci Eng C 66:130–137

    Article  CAS  Google Scholar 

  • Saini AS, Tripathi A, Melo JS (2015) On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly(AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties. RSC Adv 5:87206–87215

    Article  CAS  Google Scholar 

  • Salati A, Keshvari H, Karkhaneh A, Taranejoo S (2011) Design and fabrication of artificial skin: Chitosan and gelatin immobilization on silicone by poly acrylic acid graft using a plasma surface modification method. J Macromol Sci Part B Phys 50:1972–1982

    Article  CAS  Google Scholar 

  • Sanchis MR, Blanes V, Blanes M, Garcia D, Balart R (2006) Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur Polymer J 42(7):1558–1568

    Article  CAS  Google Scholar 

  • Saxena S, Ray AR, Kapil A, David GP, Letourneur D, Gupta B, Pelle AM (2010) Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromol Biosci 11(3):373–382

    Article  CAS  Google Scholar 

  • Shenton MJ, Lovell-Hoare MC, Stevens GC (2001) Adhesion enhancement of polymer surfaces by atmospheric pressure plasma treatment. J Phys D Appl Phys 34(18):342754–342760

    Google Scholar 

  • Shen H, Hu X, Yang F, Bei J, Wang S (2009) The bioactivity of rhBMP-2 immobilized poly(lactide-co-glycolide) scaffolds. Biomaterials 30:3150–3157

    Article  CAS  Google Scholar 

  • Shen J, Li Y, Zuo Y, Zou Q, Zhang L, Liu H (2011) Surface modification of polyamide 6 immobilized with collagen: characterization and cytocompatibility. Int J Polym Mater 60:907–921

    Article  CAS  Google Scholar 

  • Sodhi RNS (1996) Application of surface analytical and modification techniques to biomaterial research. J Electron Spectroscopy Related Phenomena 81: 269–284

    Google Scholar 

  • Sousa I, Mendes A, Pereira RF, Bartolo PJ (2014) Collagen surface modified poly(ε-caprolactone)scaffolds with improved hydrophilicity and cell adhesion properties. Mater Lett 134:263–267

    Article  CAS  Google Scholar 

  • Suntornnond R, An J, Chu CK (2016) Effect of gas plasma on polycaprolactone (PCL) membrane wettability and collagen type-I immobilized for enhancing cell proliferation. Mater Lett 171293–171296

    Google Scholar 

  • Sun HX, Zhang L, Chai H, Chen HL (2006) Surface modification of poly (tetrafluoroethylene) films via plasma treatment and graft copolymerization of acrylic acid. Desalination 192:271–279

    Article  CAS  Google Scholar 

  • Svorcik V, Arenholz E, Rybka V, Ochsner R, Ryssel H (1998) AFM surface investigation of polyethylene modified by ion bombardment. Nucl Instrum Methods Phys Res Sect B 142:349–354

    Article  CAS  Google Scholar 

  • Tathe A, Ghodke M, Nikalje A (2010) A brief review: biomaterials and their application. Int J Pharm Pharmaceutical Sci 2(4):19–23

    CAS  Google Scholar 

  • Theapsak S, Watthanaphanit A, Rujiravanit R (2012) Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment. ACS Appl Mater Interfaces 4(5):2474–2482

    Article  CAS  Google Scholar 

  • Trimukhe AM, Pandiyaraj KN, Tripathi A, Melo JS, Deshmukh RR (2017) Plasma surface modification of biomaterials for biomedical applications. In: Tripathi A, Melo J (eds) Advances in biomaterials for biomedical applications. Advanced structured materials. Springer-Nature, Singapore. ISBN: 978-981-10-3327-8, https://doi.org/10.1007/978-981-10-3328-5_3

  • Tripathi A, Melo JS (eds) (2017) Advances in biomaterials for biomedical applications. Springer-Nature, Singapore

    Google Scholar 

  • Tripathi A, Kumar A (2011) Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications. Macromol Biosci 11(1):22–35

    Article  CAS  Google Scholar 

  • Tripathi A, Melo JS (2015) Preparation of sponge-like biocomposite agarose-chitosan scaffold with primary hepatocytes for establishing an in-vitro 3D liver tissue model. RSC Adv 5:30701–30710

    Article  CAS  Google Scholar 

  • Tripathi A, Melo JS (2016) Synthesis of low-density biopolymeric chitosan-agarose cryomatrix and its surface functionalization with bio-transformed melanin for the enhanced recovery of uranium(VI) from aqueous subsurfaces. RSC Adv 6:37067–37078

    Article  CAS  Google Scholar 

  • Tripathi A, Melo JS (2019a) Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. J Chem Sci 131:92. https://doi.org/10.1007/s12039-019-1670-1

    Article  CAS  Google Scholar 

  • Tripathi A, Kathuria N, Kumar A (2009) Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res A 90(3):680–694. https://doi.org/10.1002/jbm.a.32127

    Article  CAS  Google Scholar 

  • Tripathi A, Sami H, Jain SR, Viloria-cols M, Zhuravleva N, Nilsson G, Jungvid H, Kumar A (2010) Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production. Enzyme Microb Technol 47:44–51. https://doi.org/10.1016/j.enzmictec.2010.03.009

    Article  CAS  Google Scholar 

  • Tripathi A, Kumar A (2012) Integrated approach for β-glucosidase purification from non-clarified crude homogenate using macroporous cryogel matrix. Sep Sci Technol 48(16):2410–2417

    Article  CAS  Google Scholar 

  • Tripathi A, Hadapad AB, Hire RS, Melo JS, D’Souza SF (2013a) Polymeric macroporous formulations for the control release of mosquitocidal Bacillus sphaericus ISPC-8. Enzyme Microb Technol 53(6–7):398–405. https://doi.org/10.1016/j.enzmictec.2013.08.006

  • Tripathi A, Melo JS, D’Souza SF (2013b) Uranium(VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads. J Hazard Mater 246–247:87–95

    Google Scholar 

  • Tripathi A, Melo JS, D’Souza SF (2013c) Magnetic nanoparticles in tissue regeneration. In: Tiwari A, Tiwari A (eds) Nanomaterials in drug delivery, imaging, and tissue engineering. WILEY-Scrivener Publisher, USA, pp 443–492. ISBN: 9781118290323

    Google Scholar 

  • Tripathi A, Vishnoi T, Singh D, Kumar A (2013d) Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth. Macromol Biosci 13(7):838–850. https://doi.org/10.1002/mabi.201200398

  • Tripathi A, Melo JS (2019b) Self-assembled biogenic melanin modulated surface-chemistry of biopolymers-colloidal silica composite porous matrix for the recovery of uranium. J Appl Polym Sci 136(5):46937. https://doi.org/10.1002/app.46937

    Article  CAS  Google Scholar 

  • Tyan YC, Liao JD, Lin SP (2003) Surface properties and in vitro analyses of immobilized chitosan onto polypropylene non-Woven fabric surface using antenna-coupling microwave plasma. J Mater Sci Mater Med 14:775–781

    Article  CAS  Google Scholar 

  • Unnikrishnan BS, Preethi GU, Joseph MM, Melo JS, Sreelekha TT, Tripathi A (2020) 3D printing in dental implants. In: Thomas DJ, Singh D (eds) 3D printing in medicine and surgery. Elsevier-Woodhead Publishing, USA. ISBN: 9780081025420

    Google Scholar 

  • Vartiainen J, Rättö M, Tapper U, Paulussen S, Hurme E (2005) Surface modification of atmospheric plasma activated BOPP by immobilizing chitosan. Polym Bull 54:343–352

    Article  CAS  Google Scholar 

  • Vasilets VN, Hermel G, Knigt U, Werner C, Miiller M, Simon F, Grundke K, Kadas Y, Jacobasch HJ (1997) Microwave CO2 plasma-initiated vapour phase graft polymerization of acrylic acid onto polytetrafluoroethylene for immobilization of human Thrombomodulin. Biomaterials 18:1139–1145

    Article  CAS  Google Scholar 

  • Wang W, Zheng Z, Huang X, Fan W, Yu W, Zhang Z, Li L, Mao C (2017) Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification. J Biomed Mater Res Part B Appl Biomater 105(7):1737–1746

    Article  CAS  Google Scholar 

  • Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31:2574–2582

    Article  CAS  Google Scholar 

  • Woo YI, Lee MH, Kim HL, Park JC (2010) Cellular responses and behaviors of adipose-derived stem cells onto β-Glucan and PLGA composites surface-modified by microwave-induced argon plasma. Macromol Res 18(1):90–93

    Article  CAS  Google Scholar 

  • Xiang B, Lam KS, Sun G (2009) Functional fibrous polypropylene solid support and its application in solid phase peptide synthesis and cell specific binding. React Funct Polym 69:905–914

    Article  CAS  Google Scholar 

  • Xin Z, Hou J, Ding J, Yang Z, Yan S, Liu C (2013) Surface functionalization of polyethylene via covalent immobilization of O-stearoyl-chitosan. Appl Surf Sci 279:424–431

    Article  CAS  Google Scholar 

  • Xu H, Deshmukh RR, Timmons RB, Nguyen KT (2011) Enhanced endothelialisation on surface modified poly(L-Lactic acid) substrates. Tissue Eng Part A 17:865–876

    Article  CAS  Google Scholar 

  • Yang J, Bei J, Wang S (2002) Enhanced cell affinity of poly (d, l-lactide) by combining plasma, treatment with collagen anchorage. Biomaterials 23:2607–2614

    Article  CAS  Google Scholar 

  • Yang SH, Wang EH, Gurak JA, Bhawal S, Deshmukh RR, Wijeratne AB, Edwards BL, Foss FW, Timmons RB, Schug KA (2013) Affinity mesh screen materials for selective extraction and analysis of antibiotics using transmission mode desorption electrospray ionization mass spectrometry. Langmuir 29:8046–8053

    Article  CAS  Google Scholar 

  • Yoshida S, Hagiwara K, Hasebe T, Hotta A (2013) Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf Coat Technol 233:99–107

    Article  CAS  Google Scholar 

  • Zhang C, Jin J, Zhao J, Jiang W, Yin J (2013) Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement. Colloids Surf B Bioinerfaces 102:45–52

    Article  CAS  Google Scholar 

  • Zhao JH, Wang J, Tu M, Luo BH, Zhou CR (2006) Improving the cell affinity of a poly(D, L-lactide) film modified by grafting collagen via a plasma technique. Biomed Mater 1(4):247–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Navaneetha Pandiyaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramkumar, M.C., Trimukhe, A.M., Deshmukh, R.R., Tripathi, A., Melo, J.S., Navaneetha Pandiyaraj, K. (2021). Immobilization of Biomolecules on Plasma-Functionalized Surfaces for Biomedical Applications. In: Tripathi, A., Melo, J.S. (eds) Immobilization Strategies . Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7998-1_8

Download citation

Publish with us

Policies and ethics