Skip to main content
Log in

Surface characteristics and fibroblast adhesion behavior of RGD-immobilized biodegradable PLLA films

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(l-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment andin situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLAg-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138–145 pmol/cm2. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control < PLLA-g-PAA=PLLA-g-GRDG < PLLA-g-GRGD, indicating that PLLA-g-GRGD has the highest cell adhesive property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Langer and J. P. Vacanti,Science,260, 920 (1993).

    Article  CAS  Google Scholar 

  2. J. A. Hubbell and R. Langer,Chem. Eng. News,March 13, 42 (1995).

  3. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Warson, inMolecular Biology of the Cell, Garland Publishing, New York, 1994, p 971.

    Google Scholar 

  4. B. S. Kim and D. J. Mooney,TIBITECH,16, 224 (1998).

    CAS  Google Scholar 

  5. M. Vert,Makromol. Chem. Makromol. Symp.,6, 109 (1986).

    Article  CAS  Google Scholar 

  6. D. K. Gilding and A. M. Reed,Polymer,20, 1459 (1979).

    Article  CAS  Google Scholar 

  7. D. L. Hay, J. A. von Fraunhofer, N. Chegini, and B. J. Masterson,J. Biomed. Mater. Res.,22, 179 (1988).

    Article  CAS  Google Scholar 

  8. D. A. Barrera, E. Zylstra, P. T. Lansbury, and R. Langer,J. Am. Chem. Soc.,115, 11010 (1993).

    Article  CAS  Google Scholar 

  9. D. A. Barrera, E. Zylstra, P. T. Lansbury, and R. Langer,Macromolecules,28, 425 (1995).

    Article  CAS  Google Scholar 

  10. J. Gao, L. Niklason, and R. Langer,J. Biomed. Mater. Res.,42, 417 (1998).

    Article  CAS  Google Scholar 

  11. G. Chen, T. Ushida, and T. Tateishi,Macromol. Biosci.,2, 67 (2002).

    Article  CAS  Google Scholar 

  12. J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala,J. Biomater. Sci. Polym. Edn,13, 1325 (2002).

    Article  CAS  Google Scholar 

  13. Z. Ma, C. Gao, Y. Gong, and J. Shen,Biomaterials,24, 3725 (2003).

    Article  CAS  Google Scholar 

  14. H. Chim, J. L. Ong, J.-T. Schantz, D. W. Hutmacher, and C. M. Agrawal,J. Biomed. Mater. Res.,65A, 327 (2003).

    Article  CAS  Google Scholar 

  15. C. E. Holy, C. Cheng, J. E. Davies, and M. S. Shoichet,Biomaterials,22, 25 (2001).

    Article  CAS  Google Scholar 

  16. M. B. O. Riekerink, M. B. Claase, G. H. Engbers, D. W. Grijpma, and J. Feijen,J. Biomed. Mater. Res.,65A, 417 (2003).

    Article  CAS  Google Scholar 

  17. M. D. Pierschbacher and E. Ruoslahti,Nature,309, 30 (1984).

    Article  CAS  Google Scholar 

  18. U. Hersel, C. Dahman, and H. Kessle,Biomaterials,24, 4385 (2003).

    Article  CAS  Google Scholar 

  19. H. S. Shin, S. B. Jo, and A. G. Mikos,Biomaterials,24, 4353 (2003).

    Article  CAS  Google Scholar 

  20. D. J. Mooney, K. Sano, P. M. Kaufmann, K. Majahod, B. Schloo, J. P. Vacanti, and R. Langer,J. Biomed. Mater. Res.,37, 413 (1997).

    Article  CAS  Google Scholar 

  21. S. P. Massia and J. A. Hubbell,Anal. Biochem.,187, 292 (1990).

    Article  CAS  Google Scholar 

  22. S. P. Massia and J. A. Hubbell,J. Cell. Biol.,114, 1089 (1991).

    Article  CAS  Google Scholar 

  23. M. Gümüpderelioðlu and H. Turkoðlu,Biomaterials,23, 3927 (2002).

    Article  Google Scholar 

  24. Cell Proliferation Reagent WST-1 technical bulletin, Roche Diagnostic GmbH, Germany.

  25. I. Bisson, M. Kosinshi, S. Ruault, B. Gupta, J. Hilborn, F. Wurm, and P. Frey,Biomaterials,23, 3149 (2002).

    Article  CAS  Google Scholar 

  26. C. E. Holy, C. Cheong, J. E. Davies, and M. S. Shoichet,Biomaterials,22, 25 (2001).

    Article  CAS  Google Scholar 

  27. M. B. O. Reikerink, M. B. Claase, G. H. Engbers, D. W. Grijpma, and J. Feijen,J. Biomed. Mater. Res.,65A, 417 (2003).

    Article  Google Scholar 

  28. M. Kantlehner, P. Schaffner, D. Finsinger, J. Meyer, A. Jonczyk, B. Diefenbach, B. Nies, G. Hõlzemann, S. L. Goodman, and H. Kessler,ChemBioChem.,1, 107 (2000).

    Article  CAS  Google Scholar 

  29. B. Jeschke, J. Meyer, A. Jonczyk, H. Kessler, P. Adamietz, N. M. Meenen, M. Kantlehner, C. Geopfert, and B. Nies,Biomaterials,23, 3455 (2002).

    Article  CAS  Google Scholar 

  30. C. Elvira, F. Yi, M. C. Azevedo, L. Rebouta, A. M. Cunha, J. S. Roman, and R. Reis,J. Mater. Sci. Mater. Med.,14, 187 (2003).

    Article  CAS  Google Scholar 

  31. G. C. M. Steffens, L. Nothdurft, G. Buse, H. Thissen, H. Hocher, and D. Klee,Biomaterials,23, 3523 (2002).

    Article  CAS  Google Scholar 

  32. G. Marletta, G. Ciapetti, C. Satriano, S. Pagani, and N. Baldini,Biomaterials,26, 4793 (2005).

    Article  CAS  Google Scholar 

  33. Z. Ma, C. Cao, J Yuan, J. Ji, Y. Gong, and J. Shen,J. Appl. Polym. Sci.,85, 2163 (2002).

    Article  CAS  Google Scholar 

  34. S. Aksoy, H. Tumturk, and N. Hasirci,J. Biotech.,60, 37 (1998).

    Article  CAS  Google Scholar 

  35. A. Rezania and K. E. Healy,J. Biomed. Mater. Res.,52, 595 (2000).

    Article  CAS  Google Scholar 

  36. J. A. Hubbell,Trends Polym. Sci.,2, 20 (1994).

    CAS  Google Scholar 

  37. J. A. Hubbell,Bio/Technology,13, 565 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Keun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, H.J., Ahn, KD., Han, D.K. et al. Surface characteristics and fibroblast adhesion behavior of RGD-immobilized biodegradable PLLA films. Macromol. Res. 13, 446–452 (2005). https://doi.org/10.1007/BF03218479

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218479

Keywords

Navigation