Skip to main content

Root–Soil–Microbe Interactions Mediating Nutrient Fluxes in the Rhizosphere

  • Chapter
  • First Online:
Rhizosphere Biology: Interactions Between Microbes and Plants

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Plant roots have both direct and indirect effects on nutrient availabilities and fluxes in rhizosphere soil. Direct effects include impacts that are a consequence of root growth, water/nutrient uptake and secretion of compounds that promote solubility of poorly available elements such as phosphorus and iron. Indirect effects are largely a consequence of plant–microbe interactions, mediated by the release of organic compounds from roots that both shape rhizosphere microbial community structure and promote microbial nutrient cycling activity. In recent years, significant advances have been made in the quantification of root-mediated impacts on soil biogeochemical processes, demonstrating the importance of these interactions for nutrient cycling to support plant productivity and as a critical control point for the response of soils to environmental change. This is now supplemented with an appreciation that there is a strong element of regulation, both plant and microbial, in how the underlying interactions are established and maintained. This raises the exciting possibility that management of root–microbiota interactions could be a realistic means of improving plant health and productivity, while potentially also mitigating environmental impacts. This chapter discusses progress in quantifying root impacts on soil processes and parallel advances in characterising the specificity of the plant-driven selection of associated microbiota. A clear opportunity for future research is to combine these approaches, functional -omics technologies and bioinformatics to guide next-generation crop breeding that targets both the plant and its associated microbiota (i.e. the holobiont), for productivity and resilience in sustainable agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agler MT, Ruhe J, Kroll S et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahkami AH, White RA III, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243

    Article  Google Scholar 

  • Alegria-Terrazas R, Giles C, Paterson E et al (2016) Plant-microbiota interactions as a driver of the mineral turnover in the rhizosphere. Adv Appl Microbiol 95:1–67

    Article  PubMed  CAS  Google Scholar 

  • Banba M, Gutjahr C, Miyao A et al (2008) Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol 49:1659–1671

    Article  PubMed  CAS  Google Scholar 

  • Bardon C, Piola F, Bellvert F et al (2014) Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites. New Phytol 204:620–630

    Article  PubMed  CAS  Google Scholar 

  • Bérard A, Sassi MB, Kaisermann A, Renault P (2015) Soil microbial community responses to heat wave components: drought and high temperature. Clim Res 66:243–264

    Article  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fert Soils 45:115–131

    Article  Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson TH et al (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol 37:95–105

    Article  Google Scholar 

  • Bosatta E, Ågren G (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891

    Article  CAS  Google Scholar 

  • Bouffaud ML, Poirier MA, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 16:2804–2814

    Article  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burton AL, Johnson J, Foerster J et al (2015) QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Theor Appl Genet 128:93–106

    Article  PubMed  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  PubMed  Google Scholar 

  • Carrillo Y, Dijkstra FA, Pendall E et al (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry 117:229–240

    Article  CAS  Google Scholar 

  • Chaitra J, Vinod MS, Sharma N et al (2006) Validation of markers linked to maximum root length in rice (Oryza sativa L.). Curr Sci 90:835–838

    Google Scholar 

  • Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    Article  PubMed  Google Scholar 

  • Cheng W, Coleman DC (1990) Effect of living roots on soil organic matter decomposition. Soil Biol Biochem 22:781–787

    Article  Google Scholar 

  • Cheng WX, Johnson DW, Fu SL (2003) Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization. Soil Sci Soc Am J 67:1418–1427

    Article  CAS  Google Scholar 

  • Coleman DC (1994) The microbial loop concept as used in terrestrial ecology studies. Microb Ecol 28:245–250

    Article  PubMed  CAS  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM et al (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19:988–995

    Article  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F et al (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS et al (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol 18:1781–1796

    Article  Google Scholar 

  • Fang Y, Nazaries L, Singh BK, Singh BP (2018) Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Glob Change Biol 24:2775–2790

    Article  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS et al (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Change Biol 21:2082–2094

    Article  Google Scholar 

  • Garcia J, Kao-Kniffin J (2018) Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling. Front Microbiol 9:1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 43:1705–1713

    Article  CAS  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation environ. Microbiol 7:301–313

    CAS  Google Scholar 

  • Griffiths BS, Spilles A, Bonkowski M (2012) C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecol Proc 1:6

    Article  Google Scholar 

  • Haichar ZF, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ (2017) Genetic variation in traits for nitrogen use efficiency in wheat. J Exp Bot 68:2627–2632

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hund A, Reimer R, Messmer R (2011) A consensus map of QTLs controlling the root length of maize. Plant Soil 344:143–158

    Article  CAS  Google Scholar 

  • Iannucci A, Marone D, Russo MA et al (2017) Mapping QTL for root and shoot morphological traits in a durum wheat × T. dicoccum segregating population at seedling stage. Int J Genom 3:1–17

    Google Scholar 

  • Idrissi O, Udupa SM, De Keyser E (2016) Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population. Front Plant Sci 7:1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Zhu J, Qi YB et al (2017) Increasing molecular structural complexity and decreasing nitrogen availability depress the mineralization of organic matter in subtropical forest soils. Soil Biol Biochem 108:91–100

    Article  CAS  Google Scholar 

  • Jin K, Shen J, Ashton RW et al (2013) How do roots elongate in a structured soil? J Exp Bot 64:4761–4777

    Article  PubMed  CAS  Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from Iron oxide. Soil Sci Soc Am J 70:222–234

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS et al (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass - a new perspective. Soil Biol Biochem 40:1–73

    Article  CAS  Google Scholar 

  • Kinross JM, Darzi AW, Nicholson JK (2011) Gut microbiome-host interactions in health and disease. Genome Med 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Kolb E, Hartmann C, Genet P (2012) Radial force development during root growth measured by photoelasticity. Plant Soil 360:19–35

    Article  CAS  Google Scholar 

  • Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kroll S, Agler AT, Kemen E (2017) Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding. Curr Opin Plant Biol 36:71–78

    Article  PubMed  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin JJ et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 7464:541

    Article  CAS  Google Scholar 

  • Levy A, Conway JM, Dangl JL, Woyke T (2018) Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24:475–485

    Article  PubMed  CAS  Google Scholar 

  • Lopez JR, Erickson JE, Munoz P et al (2017) QTLs associated with crown root angle, stomatal conductance, and maturity in sorghum. Plant Genome 10:0038

    Article  CAS  Google Scholar 

  • Lucas JA, Garcıa-Villaraco A, Ramos B et al (2013) Structural and functional study in the rhizosphere of Oryza sativa L. plants growing under biotic and abiotic stress. J Appl Microbiol 115:218–235

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Romheld V (1983) In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z Pflanzenphysiol 111:249–251

    Article  Google Scholar 

  • Mason-Jones K, Schmucker N, Kuzyakov Y (2018) Contrasting effects of organic and mineral nitrogen challenge the N-mining hypothesis for organic matter priming. Soil Biol Biochem 124:38–46

    Article  CAS  Google Scholar 

  • Matus I, Corey A, Filichkin T et al (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023

    Article  PubMed  CAS  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA et al (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micallef SA, Shiaris MP, ColoÂn-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moller S, Kristensen CS, Poulsen LK et al (1995) Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters. Appl Environ Microbiol 61:741–748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mönchgesang S, Strehmel N, Schmidt S et al (2016) Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci Rep 6:29033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy CJ, Baggs EM, Morley N et al (2015) Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter. Soil Biol Biochem 81:236–243

    Article  CAS  Google Scholar 

  • Murphy CJ, Baggs EM, Morley N et al (2017) Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant Soil 417:99–510

    Article  CAS  Google Scholar 

  • Mwafulirwa L, Baggs EM, Russell J et al (2016) Barley genotype influences stabilization of rhizodeposition-derived C and soil organic matter mineralization. Soil Biol Biochem 95:60–69

    Article  CAS  Google Scholar 

  • Nessner KV, Taketani RG, Lançoni MD et al (2013) Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS One 8:e73606

    Article  CAS  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  PubMed  CAS  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T et al (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  PubMed  CAS  Google Scholar 

  • Oyserman BO, Medema MH, Raaijmakers JM (2018) Road MAPs to engineer host microbiomes. Curr Opin Microbiol 43:46–54

    Article  PubMed  CAS  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Paterson E, Sim A, Standing D et al (2006) Root exudation from Hordeum vulgare in response to localised nitrate supply. J Exp Bot 57:2413–2420

    Article  PubMed  CAS  Google Scholar 

  • Paterson E, Gebbing T, Abel C et al (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  PubMed  CAS  Google Scholar 

  • Pausch J, Loeppmann S, Kühnel A et al (2016) Rhizosphere priming of barley with and without root hairs. Soil Biol Biochem 100:74–82

    Article  CAS  Google Scholar 

  • Pérez-Jaramillo J, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Jaramillo J, Carrión VJ, de Hollander M, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  PubMed  CAS  Google Scholar 

  • Ranjan P, Yin T, Zhang X et al (2010) Bioinformatics-based identification of candidate genes from QTLs associated with cell wall traits in Populus. Bioenergy Res 3:172–182

    Article  Google Scholar 

  • Rao IM, Miles JW, Beebe SE, Horst WJ (2016) Root adaptations to soils with low fertility and aluminium toxicity. Ann Bot 118:593–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanaullah M, Chabbi A, Maron PA et al (2016) How do microbial communities in top- and sub-soil respond to root litter addition under field conditions? Soil Biol Biochem 103:28–38

    Article  CAS  Google Scholar 

  • Schmidt JE, Bowles TM, Gaudin ACM (2016) Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7:373

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzad T, Chenu C, Genet P et al (2015) Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem 80:146–155

    Article  CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  PubMed  CAS  Google Scholar 

  • Sinsabaugh RL, Shah JJF (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43:313–343

    Article  Google Scholar 

  • Song C, Mazzola M, Cheng X et al (2015) Molecular and chemical dialogues in bacteria-protozoa interactions. Sci Rep 5:12837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Souza RSC, Okura VK, Armanhi JSL et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Streeter JG (1994) Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can J Microbiol 40:513–522

    Article  Google Scholar 

  • Struecker J, Joergensen RG (2015) Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes. Soil Biol Biochem 91:310–317

    Article  CAS  Google Scholar 

  • Szoboszlay M, Lambers J, Chappell J et al (2015) Comparison of root system architecture and rhizosphere microbial communities of balsas teosinte and domesticated corn cultivars. Soil Biol Biochem 80:34–44

    Article  CAS  Google Scholar 

  • Toju H, Peay KG, Yamamichi M et al (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257

    Article  PubMed  Google Scholar 

  • Tsuro M, Suwabe K, Kubo N et al (2008) Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breed Sci 58:55–61

    Article  CAS  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J et al (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 8:2485–2494

    Article  CAS  Google Scholar 

  • Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC, Boca Raton, pp 1–21

    Google Scholar 

  • von Lutzow M, Kogel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232

    Article  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215

    Article  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    Article  CAS  Google Scholar 

  • Yamamoto T, Suzuki T, Suzuki K et al (2016) Detection of QTL for exudation rate at ripening stage in rice and its contribution to hydraulic conductance. Plant Sci 242:270–277

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Liao H, Beebe SE et al (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Yin L, Dijkstra FA, Wang P et al (2018) Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition. New Phytol 218:1036–1048

    Article  PubMed  CAS  Google Scholar 

  • York LM, Galindo-Castañeda T, Schussler JR, Lynch JP (2015) Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot 66:2347–2358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Thomas CL, Xiang J et al (2016) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6:33113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu B, Gutknecht JLM, Herman DJ et al (2014) Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76:183–192

    Article  CAS  Google Scholar 

  • Zimmermann R, Sakai H, Hochholdinger F (2010) The Gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol 152:356–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The James Hutton Institute receives funding from RESAS (Rural & Environmental Science & Analytical Services) of the Scottish Government. LM is a Research Fellow in a BBSRC-supported project (BB/P022936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paterson, E., Mwafulirwa, L. (2021). Root–Soil–Microbe Interactions Mediating Nutrient Fluxes in the Rhizosphere. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_3

Download citation

Publish with us

Policies and ethics