Skip to main content

Molecular Mechanisms of Sex Pheromone Reception in Moths

  • Chapter
  • First Online:
Insect Sex Pheromone Research and Beyond

Part of the book series: Entomology Monographs ((ENTMON))

Abstract

Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone detection in male moths is the high degree of specificity and sensitivity at all levels from sensory to behavior. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the reception of sex pheromones, which involve several molecular components, such as pheromone-binding proteins, olfactory receptor co-receptor proteins, sex pheromone receptor proteins, and sensory neuron membrane proteins. In this chapter, we focus on these latest advances and discuss what they unraveled about underlying mechanisms of specific and sensitive detection of sex pheromones in moths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson P, Hansson BS, Löfqvist J (1995) Plant-odour-specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20(3):189–198

    Article  CAS  Google Scholar 

  • Anton S, Hansson BS (1995) Sex pheromone and plant-associated odor processing in antennal lobe interneurons of male Spodoptera littoralis (Lepidoptera: Noctuidae). J Comp Physiol A 176:773–789

    Article  CAS  Google Scholar 

  • Baker TC (2008) Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J Chem Ecol 34(7):971–981

    Article  CAS  PubMed  Google Scholar 

  • Baker TC, Kuenen LP (1982) Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216(4544):424–427

    Article  CAS  PubMed  Google Scholar 

  • Baker TC, Willis MA, Haynes KF, Phelan PL (1985) A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol Entomol 10(3):257–265

    Article  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20

    PubMed  PubMed Central  Google Scholar 

  • Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289

    Article  CAS  PubMed  Google Scholar 

  • Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Ãœber den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284

    Google Scholar 

  • Clyne PJ, Warr CG, Freeman MC, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    Article  CAS  PubMed  Google Scholar 

  • Collins CW, Potts SF (1932) Attractants for the flying gypsy moths as an aid in locating new infestations. Techn Bull 336(336):1–44

    Google Scholar 

  • Daimon T, Kiuchi T, Takasu Y (2014) Recent progress in genome engineering techniques in the silkworm. Bombyx mori Dev Growth Differ 6(1):14–25

    Article  CAS  Google Scholar 

  • Engsontia P, Sangket U, Chotigeat W, Satasook C (2014) Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J Mol Evol 79:21–39

    Article  CAS  PubMed  Google Scholar 

  • Ernst KD (1969) Die Feinstruktur von Riechsensillen auf der Antenne des Aaskiifers Necrophorus (Coleoptera). Structure 94:72–102

    CAS  Google Scholar 

  • Fleischer J, Krieger J (2018) Insect pheromone receptors – key elements in sensing intraspecific chemical signals. Front Cell Neurosci 12:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forstner M, Gohl T, Breer H, Krieger J (2006) Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invertebr Neurosci 6(4):177–187

    Article  CAS  Google Scholar 

  • Forstner M, Gohl T, Gondesen I, Raming K, Breer H, Krieger J (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem Senses 33(3):291–299

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH (2009) The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10:332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gräter F, Xu W, Leal W, Grubmüller H (2006) Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure 14(10):1577–1586

    Article  PubMed  CAS  Google Scholar 

  • Große-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555

    Article  PubMed  Google Scholar 

  • Gu SH, Zhou JJ, Wang GR, Zhang YJ, Guo YY (2013) Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol Biol 43(3):237–251

    Article  CAS  PubMed  Google Scholar 

  • Hansson BS, Ljungberg H, Hallberg E, Lofstedt C (1992) Functional specialization of olfactory glomeruli in a moth. Science 256(5061):1313–1315

    Article  CAS  PubMed  Google Scholar 

  • He P, Li ZQ, Liu CC, Liu SJ, Dong SL (2014) Two esterases from the genus Spodoptera degrade sex pheromones and plant volatiles. Genome 57(4):201–208

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  CAS  PubMed  Google Scholar 

  • Hooper AM, Dufour S, He X, Muck A, Zhou J, Almeida R, Field LM, Svatos A, Pickett JA (2009) High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues. Chem Commun 38:5725–5727

    Article  CAS  Google Scholar 

  • Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci 102:14075–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwano M, & Kanzaki R. (2005). Immunocytochemical identification of neuroactive substances in the antennal lobe of the male silkworm moth Bombyx mori. Zoological Science 22(2):199–211

    Google Scholar 

  • Jacquin-Joly E, Merlin C (2004) Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol 30:2359–2397

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci 105(31):10996–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan MD, Anderson A, Begum D, Carraher C, Authier A, Marshall SD, Kiely A, Gatehouse LN, Greenwood DR, Christie DL, Kralicek AV, Trowell SC, Newcomb RD (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem Senses 34:383–394

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE (1987) R. H. Wright lectures on insect olfaction. Simon Fraser Univ, Burnaby

    Google Scholar 

  • Kaissling KE (2009) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(10):895–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaissling KE (2013) Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(11):879–896

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26(2):125–150

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE, Kasang G, Bestmann HJ, Stransky W, Vostrowsky O (1978) A new pheromone of the silkworm moth Bombyx mori – sensory pathway and behavioral effect. Naturwissenschaften 65(7):382–384

    Article  CAS  Google Scholar 

  • Kanzaki R, Sugi N, Shibuya T (1992) Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci 9(3):515–527

    Google Scholar 

  • Kasang G (1971) Bombykol reception and metabolism on the antennae of the silkmoth Bombyx mori. In: Ohloff G, Thomas AF (eds) Gustation and olfaction. Academic, London, pp 245–250

    Google Scholar 

  • Kasang G (1973) Physikochemische vorgange beim riechen des seidenspinners. Naturwissenschaften 60:95–101

    Article  CAS  Google Scholar 

  • Kasang G, Kaissling KE (1972) Specificity of primary and secondary olfactory processes in Bombyx antennae. In: Schneider D (ed) International symposium Olfaction and Taste IV. Wissensch Verlagsgesellsch, Stuttgart, pp 200–206

    Google Scholar 

  • Kasang G, Von Proff L, Nicholls M (1988) Enzymatic conversion and degradation of sex pheromones in antennae of the male silkworm moth Antheraea polyphemus. Zeitschrift Fur Naturforschung Sect C J Biosci 43(3–4):275–284

    Article  CAS  Google Scholar 

  • Kasang G, Nicholls M, Keil T, Kanaujia S (1989a) Enzymatic conversion of sex pheromones in olfactory hairs of the male silkworm moth Antheraea polyphemus. Zeitschrift Fur Naturforschung – Sect C J Biosci 44(11–12):920–926

    Article  CAS  Google Scholar 

  • Kasang G, Nicholls M, von Proff L (1989b) Sex pheromone conversion and degradation in antennae of the male silkworm moth Bombyx mori. L. Experientia 45:81–87

    Article  CAS  Google Scholar 

  • Keil TA (1982) Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules. Tissue Cell 14(3):451–462

    Article  CAS  PubMed  Google Scholar 

  • Klein U (1987) Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem 17(8):1193–1204

    Article  Google Scholar 

  • Kohel MAR (2006) The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem Senses 31(2):93–105

    Article  Google Scholar 

  • Koutroumpa FA, Monsempes C, François MC, de Cian A, Royer C, Concordet JP, Jacquin-Joly E (2016) Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 6:29620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer E (1992) Attractivity of pheromone surpassed by time-patterned application of two nonpheromone compounds. J Insect Behav 5(1):83–97

    Article  Google Scholar 

  • Krieger J, Nickisch-rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26(3):297–307

    Article  CAS  PubMed  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Macallister IE, Kavanaugh MP, Wanner KW (2012) Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci 109(35):14081–14086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10(9):e1004600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE, Dickens JC, Jang EB (1993) Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology 4(3–4):145–152

    Article  CAS  Google Scholar 

  • Liu NY, Liu CC, Dong SL (2013) Functional differentiation of pheromone-binding proteins in the common cutworm Spodoptera litura. Comp Biochem Physiol A Mol Integr Physiol 165(2):254–262

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liu W, Zeng B, Wang G, Hao D, Huang Y (2017) Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. Insect Biochem Mol Biol 86:58–67

    Article  CAS  PubMed  Google Scholar 

  • Lundin C, Käll L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, Von Heijne G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581:5601–5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mafra-Neto A, Cardé RT (1995) Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol Entomol 20(2):117–133

    Article  Google Scholar 

  • Mitsuno H, Sakurai T, Murai M, Yasuda T, Kugimiya S, Ozawa R, Toyohara H, Takabayashi J, Miyoshi H, Nishioka T (2008) Identification of receptors of main sex-pheromone components of three Lepidopteran species. Eur J Neurosci 28:893–902

    Article  PubMed  Google Scholar 

  • Mitsuno H, Sakurai T, Namiki S, Mitsuhashi H, Kanzaki R (2015) Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens Bioelectron 65:287–294

    Article  CAS  PubMed  Google Scholar 

  • Murlis J, Jones C (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6:71–86

    Article  Google Scholar 

  • Murlis J, Elkinton JS, Carde RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532

    Article  Google Scholar 

  • Murlis J, Willis MA, Cardé RT (2000) Spatial and temporal structures of pheromone plumes in fields and forests. Physiol Entomol 25:211–222

    Article  CAS  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307(5715):1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(5):501–515

    Article  CAS  PubMed  Google Scholar 

  • Ochieng SA, Park KC, Baker TC (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188(4):325–333

    Article  CAS  PubMed  Google Scholar 

  • Party V, Hanot C, Sain I, Rochat D, Michel R (2009) Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem Senses 34:763–774

    Article  CAS  PubMed  Google Scholar 

  • Pelletier J, Bozzolan F, Solvar M, François MC, Jacquin-Joly E, Maïbèche-Coisne M (2007) Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation. Gene 404(1–2):31–40

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63(14):1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Pophof B (1997) Olfactory responses recorded from sensilla coeloconica of the silkmoth Bombyx mori. Physiol Entomol 22(3):239–248

    Article  Google Scholar 

  • Pregitzer P, Schubert M, Breer H, Hansson BS, Sachse S, Krieger J (2012) Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front Cell Neurosci 6:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy GVP, Guerrero A (2010) New pheromones and insect control strategies. Vitam Horm 83(C):493–519

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Martos R, Sears CR, Todres EZ, Walden KKO, Nardi JB (1999) Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol 8(4):501–518

    Article  CAS  PubMed  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272(23):14792–14799

    Article  CAS  PubMed  Google Scholar 

  • Rybczynski R, Vogt RG, Lerner MR (1990) Antennal-specific pheromone-degrading aldehyde oxidases from the moths Antheraea polyphemus and Bombyx mori. J Biol Chem 265:19712–19715

    CAS  PubMed  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci 101:16653–16658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kanzaki R (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7(6):e1002115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Namiki S, Kanzaki R (2014) Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Physiol 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Mitsuno H, Mikami A, Uchino K, Tabuchi M, Zhang F, Kanzaki R (2015) Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth. Sci Rep 5:11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone- binding-protein-bombykol complex. Chem Biol 7(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002

    Article  CAS  PubMed  Google Scholar 

  • Schneider D (1957) Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13(2):89–91

    Article  Google Scholar 

  • Schneider D, Boeckh J (1962) Rezeptorpotential und nervenimpulse einzel-ner olfaktorischer sensillen der insektenan-tenne. Z Vergl Physiol 45:405–412

    Article  Google Scholar 

  • Shields VDC, Hildebrand JG (2001) Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc Res Tech 55(5):307–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiota Y, Sakurai T, Daimon T, Mitsuno H, Fujii T, Matsuyama S, Sezutsu H, Ishikawa Y, Kanzaki R (2018) In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori. Sci Rep 8(1):1–8

    Article  CAS  Google Scholar 

  • Slifer EH (1970) The structure of arthropod chemoreceptors. Annu Rev Entomol 15(1):121–142

    Article  Google Scholar 

  • Steinbrecht RA (1970) Stimulus transfering tubules in insect olfactory receptors. In: Proceeding of 7th International Congress on Electron Microscopy. Grenoble

    Google Scholar 

  • Steinbrecht RA (1973) Der Feinbau olfaktorischer Sensillen des Seidenspinners (Insecta, Lepidoptera). Rezeptorforts„tze und reizleitender Apparat. Z Zellforsch 139:533–565

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Liu Y, Wang G (2013) Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xylostella. J Insect Physiol 59(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Sakurai T, Mitsuno H, Namiki S, Minegishi R, Shiotsuki T, Uchino K, Sezutsu H, Tamura T, Haupt SS, Nakatani K, Kanzaki R (2013) Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A 110(38):15455–15460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasu Y, Sajwan S, Daimon T, Osanai-Futahashi M, Uchino K, Sezutsu H, Tamura T, Zurovec M (2013) Efficient TALEN construction for Bombyx mori gene targeting. PLoS One 8:e73458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332

    Article  CAS  PubMed  Google Scholar 

  • Vickers NJ, Baker TC (1994) Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc Natl Acad Sci U S A 91(13):5756–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers NJ, Baker TC (1996) Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J Comp Physiol A 178:831–847

    Article  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci 82(24):8827–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC (2009) The insect SNMP gene family. Insect Biochem Mol Biol 39(7):448–456

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Große-Wilde E, Zhou JJ (2015) The Lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem Mol Biol 62:142–153

    Article  CAS  PubMed  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96(5):725–736

    Article  CAS  PubMed  Google Scholar 

  • Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Shang Y, Hilton DS, Inthavong K, Zhang D, Elgar MA (2018) Antennal scales improve signal detection efficiency in moths. Proc R Soc B Biol Sci 285(1874):20172832

    Article  CAS  Google Scholar 

  • Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Hooper AM, Pickett JA, Leal WS (2012) Specificity determinants of the silkworm moth sex pheromone. PLoS One 7(9):2–11

    Google Scholar 

  • Yang B, Fujii T, Ishikawa Y, Matsuo T (2016) Targeted mutagenesis of an odorant receptor co-receptor using TALEN in Ostrinia furnacalis. Insect Biochem Mol Biol 70:53–59

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Huang LQ, Ning C, Wang CZ (2017) Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. elife 6:e29100

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye ZF, Liu XL, Han Q, Liao H, Dong XT, Zhu GH, Dong SL (2017) Functional characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system. Sci Rep 7(1):8470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegelberger G (1995) Redox-shift of the pheromone-binding protein in the silkmoth Antheraea polyphemus. Eur J Biochem 232(3):706–711

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiota, Y., Sakurai, T. (2020). Molecular Mechanisms of Sex Pheromone Reception in Moths. In: Ishikawa, Y. (eds) Insect Sex Pheromone Research and Beyond. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-15-3082-1_9

Download citation

Publish with us

Policies and ethics