Skip to main content

Exercise and Hyperlipidemia

  • Chapter
  • First Online:
Physical Exercise for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1228))

Abstract

Hyperlipidemia is one of the common pathological conditions of human, which occurs due to lipid metabolism disorder in the human body, resulting in serum lipid concentration beyond normal levels. Due to heredity, diet, nutrition, medicine, and other factors, the incidence of hyperlipidemia has been significantly enhanced and has become one of the most common pathological condition of the human. By introducing the background and pathogenesis of hyperlipidemia and the positive effects of exercise on a variety of related diseases, this chapter discusses the relationship between exercise and serum lipid concentration and the effects of different types of exercise on hyperlipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leon AS, Sanchez OA (2001) Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc 33(6 Suppl):S502

    Article  CAS  PubMed  Google Scholar 

  2. Karr S (2017) Epidemiology and management of hyperlipidemia. Am J Manag Care 23(9 Suppl):S139–S148

    PubMed  Google Scholar 

  3. Navar-Boggan AM, Peterson ED, D’Agostino RB Sr, Neely B, Sniderman AD, Pencina MJ (2015) Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 131(5):451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pearson TA (2017) Understanding the impact of hyperlipidemia treatment on medical expenditures for cardiovascular disease. Med Care 55(1):1–3

    Article  PubMed  Google Scholar 

  5. Temple NJ (1994) Diet, blood lipids and coronary heart disease—current controversies. S Afr Med J Suppl 30–1

    Google Scholar 

  6. Bleicher JM (1988) The role of hyperlipidemia therapy in preventive care. J Am Osteopath Assoc 88(10):1255–1256. 1261-1254

    CAS  PubMed  Google Scholar 

  7. Kabrt J, Sobra J, Prochazkova R (1983) [Serum lipid concentration in familial hyperlipoproteinemia type IV. Treatment with vitamin C and unsaturated fatty acids]. Cas Lek Cesk 122(21):658–662

    Google Scholar 

  8. Ducharme N, Radhamma R (2008) Hyperlipidemia in the elderly. Clin Geriatr Med 24(3):471–487. vi

    Article  PubMed  Google Scholar 

  9. Cicero AFG, Colletti A (2018) Polyphenols effect on circulating lipids and lipoproteins: from biochemistry to clinical evidence. Curr Pharm Des 24(2):178–190

    Article  CAS  PubMed  Google Scholar 

  10. Xenoulis PG, Steiner JM (2010) Lipid metabolism and hyperlipidemia in dogs. Vet J 183(1):12–21

    Article  CAS  PubMed  Google Scholar 

  11. Ha MS, Kim JH, Kim YS, Kim DY (2018) Effects of aquarobic exercise and burdock intake on serum blood lipids and vascular elasticity in Korean elderly women. Exp Gerontol 101:63–68

    Article  CAS  PubMed  Google Scholar 

  12. Masuda D, Yamashita S (2017) Postprandial hyperlipidemia and remnant lipoproteins. J Atheroscler Thromb 24(2):95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakamura K, Miyoshi T, Yunoki K, Ito H (2016) Postprandial hyperlipidemia as a potential residual risk factor. J Cardiol 67(4):335–339

    Article  PubMed  Google Scholar 

  14. Chauhan A, Paunikar P (2014) Update on pediatric hyperlipidemia. Curr Opin Pediatr 26(2):252–258

    Article  CAS  PubMed  Google Scholar 

  15. Litvinov DY, Savushkin EV, Garaeva EA, Dergunov AD (2016) Cholesterol efflux and reverse cholesterol transport: experimental approaches. Curr Med Chem 23(34):3883–3908

    Article  CAS  PubMed  Google Scholar 

  16. Song G, Chen C, Zhang J, Chang L, Zhu D, Wang X (2018) Association of traditional Chinese exercises with glycemic responses in people with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. J Sport Health Sci 7(4):442–452

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bagdade JD, Yee E, Wilson DE, Shafrir (1978) Hyperlipidemia in renal failure: studies of plasma lipoproteins, hepatic triglyceride production, and tissue lipoprotein lipase in a chronically uremic rat model. J Lab Clin Med 91(1):176–186

    CAS  PubMed  Google Scholar 

  18. Graudal NA, Galløe AM, Garred P (1998) Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: a meta-analysis. JAMA 279(17):1383

    Article  CAS  PubMed  Google Scholar 

  19. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F (1998) Triglyceride concentration and ischemic heart disease: an eight-year follow-up in the Copenhagen Male Study. Circulation 97(11):1029–1036

    Article  CAS  PubMed  Google Scholar 

  20. Miturzyå Ska-Stryjecka H (1967) Activity of lipoprotein lipase and effect of heparin on blood lipids in exogenous obesity. Pol J Aviat Med Psychol 6(6):1459–1465

    Google Scholar 

  21. Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB (2010) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129(2):227–230

    Article  Google Scholar 

  22. Koo SI, Noh SK (2007) Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 18(3):179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williams PT (1996) High-density lipoprotein cholesterol and other risk factors for coronary heart disease in female runners. N Engl J Med 334(20):1298–1303

    Article  CAS  PubMed  Google Scholar 

  24. Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol 290(5):852–858

    Google Scholar 

  25. Feingold KR, Castro GR, Ishikawa Y, Fielding PE, Fielding CJ (1989) Cutaneous xanthoma in association with paraproteinemia in the absence of hyperlipidemia. J Clin Investig 83(3):796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ross R, Harker L (1976) Hyperlipidemia and atherosclerosis. Science 193(4258):1094–1100

    Article  CAS  PubMed  Google Scholar 

  27. Drechsler M, Megens RT, Van ZM, Weber C, Soehnlein O (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122(18):1837

    Article  CAS  PubMed  Google Scholar 

  28. de Sereday MS, Gonzalez C, Giorgini D, De LL, Braguinsky J, Cobeñas C, Libman C, Tesone C (2004) Prevalence of diabetes, obesity, hypertension and hyperlipidemia in the central area of Argentina. Diabetes Metab 30(4):335–339

    Article  PubMed  Google Scholar 

  29. Sharabi Y, Eldad A (2000) Nonalcoholic fatty liver disease is associated with hyperlipidemia and obesity. Am J Med 109(2):171–171

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura H (2001) [Primary hyperlipidemia]. Nihon Rinsho 59(Suppl 2):633

    Google Scholar 

  31. Havel RJ, Rapaport E (1995) Management of primary hyperlipidemia. N Engl J Med 332(22):1491

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura H (2001) [Secondary hyperlipidemia]. Nihon Rinsho 59(Suppl 2):641–646

    Google Scholar 

  33. Baroni MG, Berni A, Romeo S, Arca M, Tesorio T, Sorropago G, Di Mario U, Galton DJ (2003) Genetic study of common variants at the Apo E, Apo AI, Apo CIII, Apo B, lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes and coronary artery disease (CAD): variation in LIPC gene associates with clinical outcomes in patients with established CAD. BMC Med Genet 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schulze PC, Drosatos K, Goldberg IJ (2016) Lipid use and misuse by the heart. Circ Res 118(11):1736–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sorci-Thomas M, Wilson MD, Johnson FL, Williams DL, Rudel LL (1989) Studies on the expression of genes encoding apolipoproteins B100 and B48 and the low density lipoprotein receptor in nonhuman primates. Comparison of dietary fat and cholesterol. J Biol Chem 264(15):9039–9045

    CAS  PubMed  Google Scholar 

  36. Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC, Lund-Katz S (2003) Effects of polymorphism on the lipid interaction of human apolipoprotein E. J Biol Chem 278(42):40723–40729

    Article  CAS  PubMed  Google Scholar 

  37. Kastelein JJ, van Leuven SI, Burgess L, Evans GW, Kuivenhoven JA, Barter PJ, Revkin JH, Grobbee DE, Riley WA, Shear CL, Duggan WT, Bots ML, Investigators R (2007) Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med 356(16):1620–1630

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Phys Endocrinol Metab 297(2):E271–E288

    Article  CAS  Google Scholar 

  39. Zhang J, Liu Q (2015) Cholesterol metabolism and homeostasis in the brain. Protein Cell 6(4):254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oram JF, Heinecke JW (2005) ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 85(4):1343–1372

    Article  CAS  PubMed  Google Scholar 

  41. Ozderya A, Temizkan S, Aydin Tezcan K, Ozturk FY, Altuntas Y (2015) A case of Madelung’s disease accompanied by Klinefelter’s syndrome. Endocrinol Diabetes Metab Case Rep 2015:140119

    PubMed  PubMed Central  Google Scholar 

  42. Bragg DA, Walling A (2015) Metabolic syndrome: hyperlipidemia. FP Essent 435:17–23

    PubMed  Google Scholar 

  43. Yang Y, Chan L (2016) Monogenic diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev 37(3):190–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS, Sawka AM, American Thyroid Association Task Force on Thyroid Hormone Replacement (2014) Guidelines for the treatment of hypothyroidism: prepared by the American thyroid association task force on thyroid hormone replacement. Thyroid 24(12):1670–1751

    Article  PubMed  PubMed Central  Google Scholar 

  45. Matvienko OA, Lewis DS, Swanson M, Arndt B, Rainwater DL, Stewart J, Alekel DL (2002) A single daily dose of soybean phytosterols in ground beef decreases serum total cholesterol and LDL cholesterol in young, mildly hypercholesterolemic men. Am J Clin Nutr 76(1):57–64

    Article  CAS  PubMed  Google Scholar 

  46. Vaziri ND, Sato T, Liang K (2003) Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int 63(5):1756–1763

    Article  CAS  PubMed  Google Scholar 

  47. Inanaga R, Shimizu H, Uchida H, Kataoka I, Kobayashi M, Fukuoka K, Karube M, Komagata Y, Kaname S, Arimura Y (2016) A case report of a nephrotic syndrome on IgA nephropathy complicated by Kimura’s disease. Nippon Naika Gakkai Zasshi 105(5):881–885

    Article  PubMed  Google Scholar 

  48. Petrovic D, Stojimirovic B (2008) Proteinuria as a risk factor for the progression of chronic renal disease. Vojnosanit Pregl 65(7):552–558

    Article  PubMed  Google Scholar 

  49. Shin Y, Vaziri ND, Willekes N, Kim CH, Joles JA (2005) Effects of gender on hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, and LDL receptor in hereditary analbuminemia. Am J Physiol Endocrinol Metab 289(6):E993–E998

    Article  CAS  PubMed  Google Scholar 

  50. Erlichman J, Kerbey AL, James WP (2002) Physical activity and its impact on health outcomes. Paper 1: The impact of physical activity on cardiovascular disease and all-cause mortality: an historical perspective. Obes Rev 3(4):257–271

    Article  CAS  PubMed  Google Scholar 

  51. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Goldstein LB, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, Ockene IS, Sacco RL, Sallis JF Jr, Smith SC Jr, Stone NJ, Taubert KA (2002) AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 106(3):388–391

    Article  PubMed  Google Scholar 

  52. Batacan RB Jr, Duncan MJ, Dalbo VJ, Buitrago GL, Fenning AS (2018) Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet. J Sport Health Sci 7(1):109–119

    Article  PubMed  Google Scholar 

  53. Golbidi S, Laher I (2012) Exercise and the cardiovascular system. Cardiol Res Pract 2012:210852

    Article  PubMed  PubMed Central  Google Scholar 

  54. Physical Activity Guidelines Advisory Committee Report (2008) To the Secretary of Health and Human Services. Part A: executive summary (2009). Nutr Rev 67(2):114–120

    Google Scholar 

  55. Nightingale TE, Bilzon J (2016) Cardiovascular health benefits of exercise in people with spinal cord injury: more complex than a prescribed exercise intervention. Arch Phys Med Rehabil 97(6):1038

    Article  PubMed  Google Scholar 

  56. Fraser GE (1994) Diet and coronary heart disease: beyond dietary fats and low-density-lipoprotein cholesterol. Am J Clin Nutr 59(5 Suppl):1117S–1123S

    Article  CAS  PubMed  Google Scholar 

  57. Santilli F, Vazzana N, Iodice P, Lattanzio S, Liani R, Bellomo RG, Lessiani G, Perego F, Saggini R, Davi G (2013) Effects of high-amount-high-intensity exercise on in vivo platelet activation: modulation by lipid peroxidation and AGE/RAGE axis. Thromb Haemost 110(6):1232–1240

    Article  CAS  PubMed  Google Scholar 

  58. Connelly PW, Maguire GF, Lee M, Little JA (1990) Plasma lipoproteins in familial hepatic lipase deficiency. Arteriosclerosis 10(1):40–48

    Article  CAS  PubMed  Google Scholar 

  59. Blazek A, Rutsky J, Osei K, Maiseyeu A, Rajagopalan S (2013) Exercise-mediated changes in high-density lipoprotein: impact on form and function. Am Heart J 166(3):392–400

    Article  CAS  PubMed  Google Scholar 

  60. Miller TD, Balady GJ, Fletcher GF (1997) Exercise and its role in the prevention and rehabilitation of cardiovascular disease. Ann Behav Med 19(3):220–229

    Article  CAS  PubMed  Google Scholar 

  61. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leonska-Duniec A, Jastrzebski Z, Zarebska A, Maciejewska A, Ficek K, Cieszczyk P (2018) Assessing effect of interaction between the FTO A/T polymorphism (rs9939609) and physical activity on obesity-related traits. J Sport Health Sci 7(4):459–464

    Article  PubMed  Google Scholar 

  63. Tran ZV, Weltman A (1985) Differential effects of exercise on serum lipid and lipoprotein levels seen with changes in body weight. A meta-analysis. JAMA 254(7):919–924

    Article  CAS  PubMed  Google Scholar 

  64. Chiang YK, Srinivasan SR, Webber LS, Berenson GS (1989) Relationship between change in height and changes in serum lipid and lipoprotein levels in adolescent males: the Bogalusa Heart Study. J Clin Epidemiol 42(5):409–415

    Article  CAS  PubMed  Google Scholar 

  65. Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6(4):345–351

    Article  CAS  PubMed  Google Scholar 

  66. Wood PD, Haskell WL, Blair SN, Williams PT, Krauss RM, Lindgren FT, Albers JJ, Ho PH, Farquhar JW (1983) Increased exercise level and plasma lipoprotein concentrations: a one-year, randomized, controlled study in sedentary, middle-aged men. Metabolism 32(1):31–39

    Article  CAS  PubMed  Google Scholar 

  67. Figueroa A, Going SB, Milliken LA, Blew RM, Sharp S, Teixeira PJ, Lohman TG (2003) Effects of exercise training and hormone replacement therapy on lean and fat mass in postmenopausal women. J Gerontol Ser A Biol Sci Med Sci 58(3):266–270

    Article  Google Scholar 

  68. Heinecke JW (2010) The protein cargo of HDL: implications for vascular wall biology and therapeutics. J Clin Lipidol 4(5):371–375

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30(2):139–143

    Article  CAS  PubMed  Google Scholar 

  70. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, Remaley AT, Rothblat GH, Tall AR, Yvan-Charvet L (2012) Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125(15):1905–1919

    Article  PubMed  PubMed Central  Google Scholar 

  71. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM (2011) HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol 8(4):222–232

    Article  CAS  PubMed  Google Scholar 

  72. Aggarwal V, Kashyap D, Sak K, Tuli HS, Jain A, Chaudhary A, Garg VK, Sethi G, Yerer MB (2019) Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int J Mol Sci 20(3):656

    Google Scholar 

  73. Seip RL, Moulin P, Cocke T, Tall A, Kohrt WM, Mankowitz K, Semenkovich CF, Ostlund R, Schonfeld G (1993) Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler Thromb Vasc Biol 13(9):1359–1367

    Article  CAS  Google Scholar 

  74. Ohta M, Nanri H, Matsushima Y, Sato Y, Ikeda M (2005) Blood pressure-lowering effects of lifestyle modification: possible involvement of nitric oxide bioavailability. Hypertens Res 28(10):779–786

    Article  CAS  PubMed  Google Scholar 

  75. Haskell WL (1984) The influence of exercise on the concentrations of triglyceride and cholesterol in human plasma. Exerc Sport Sci Rev 12:205–244

    Article  CAS  PubMed  Google Scholar 

  76. Burtscher M (2014) Putative role of different exercise breathing patterns in normo- and hypobaric hypoxia. Respir Physiol Neurobiol 200:6

    Article  PubMed  Google Scholar 

  77. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, Bales CW, Henes S, Samsa GP, Otvos JD, Kulkarni KR, Slentz CA (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347(19):1483–1492

    Article  CAS  PubMed  Google Scholar 

  78. Duncan JJ, Gordon NF, Scott CB (1991) Women walking for health and fitness. How much is enough? JAMA 266(23):3295–3299

    Article  CAS  PubMed  Google Scholar 

  79. Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS, Tolson H (1997) Training intensity, blood lipids, and apolipoproteins in men with high cholesterol. J Appl Physiol. (1985 82(1):270–277

    Article  CAS  PubMed  Google Scholar 

  80. Sunami Y, Motoyama M, Kinoshita F, Mizooka Y, Sueta K, Matsunaga A, Sasaki J, Tanaka H, Shindo M (1999) Effects of low-intensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects. Metabolism 48(8):984–988

    Article  CAS  PubMed  Google Scholar 

  81. Trombold JR, Christmas KM, Machin DR, Kim IY, Coyle EF (2013) Acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation. J Appl Physiol. (1985 114(6):792–800

    Article  CAS  PubMed  Google Scholar 

  82. Chen Z, Yan W, Mao Y, Ni Y, Zhou L, Song H, Xu W, Wang L, Shen Y (2018) Effect of aerobic exercise on Treg and Th17 of rats with ischemic cardiomyopathy. J Cardiovasc Transl Res 11(3):230–235

    Article  PubMed  Google Scholar 

  83. Huttunen JK, Lansimies E, Voutilainen E, Ehnholm C, Hietanen E, Penttila I, Siitonen O, Rauramaa R (1979) Effect of moderate physical exercise on serum lipoproteins. A controlled clinical trial with special reference to serum high-density lipoproteins. Circulation 60(6):1220–1229

    Article  CAS  PubMed  Google Scholar 

  84. Kelley GA, Kelley KS (2006) Aerobic exercise and lipids and lipoproteins in men: a meta-analysis of randomized controlled trials. J Mens Health Gend 3(1):61–70

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, Suzuki E, Shimano H, Yamamoto S, Kondo K, Ohashi Y, Yamada N, Sone H (2007) Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 167(10):999–1008

    Article  CAS  PubMed  Google Scholar 

  86. Gadais T, Boulanger M, Trudeau F, Rivard MC (2018) Environments favorable to healthy lifestyles: a systematic review of initiatives in Canada. J Sport Health Sci 7(1):7–18

    Article  PubMed  Google Scholar 

  87. Ghanbari-Niaki A, Saghebjoo M, Hedayati M (2011) A single session of circuit-resistance exercise effects on human peripheral blood lymphocyte ABCA1 expression and plasma HDL-C level. Regul Pept 166(1–3):42–47

    Article  CAS  PubMed  Google Scholar 

  88. Ronsein GE, Hutchins PM, Isquith D, Vaisar T, Zhao XQ, Heinecke JW (2016) Niacin therapy increases high-density lipoprotein particles and total cholesterol efflux capacity but not ABCA1-specific cholesterol efflux in statin-treated subjects. Arterioscler Thromb Vasc Biol 36(2):404–411

    Article  CAS  PubMed  Google Scholar 

  89. Kelley GA, Kelley KS (2009) Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev Med 49(6):473–475

    Article  CAS  PubMed  Google Scholar 

  90. Hui SS, Woo J, Kwok T (2009) Evaluation of energy expenditure and cardiovascular health effects from Tai Chi and walking exercise. Hong Kong Med J 15(Suppl 2):4–7

    PubMed  Google Scholar 

  91. Gong LS, Qian JA, Zhang JS, Yang Q, Jiang J, Tao Q, Zhang XM (1981) Changes in heart rate and electrocardiogram during taijiquan exercise: analysis by telemetry in 100 subjects. Chin Med J (Engl Ed) 94(9):589–592

    CAS  Google Scholar 

  92. Liu SY, Ding Z, Guo-Dong MA (2007) The intervention of Taijiquan on blood lipids and Ig of abnormal blood lipids patient. J Tianjin Univ Sport 22(4):318–320

    Google Scholar 

  93. Lee MR, Kim WS (2006) The effects of brisk walking versus brisk walking plus diet on triglycerides and apolipoprotein B levels in middle-aged overweight/obese women with high triglyceride levels. Taehan Kanho Hakhoe Chi 36(8):1352–1358

    PubMed  Google Scholar 

  94. Woolf-May K, Kearney EM, Owen A, Jones DW, Davison RC, Bird SR (1999) The efficacy of accumulated short bouts versus single daily bouts of brisk walking in improving aerobic fitness and blood lipid profiles. Health Educ Res 14(6):803–815

    Article  CAS  PubMed  Google Scholar 

  95. Hardman AE, Hudson A (1994) Brisk walking and serum lipid and lipoprotein variables in previously sedentary women—effect of 12 weeks of regular brisk walking followed by 12 weeks of detraining. Br J Sports Med 28(4):261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hazar S, Koç M, Hazar M (2010) The effect of run and walk exercise programme on blood lipids and chronic inflammation in sedentary males with metabolic syndrome. Br J Sports Med 44(1):i24

    Article  Google Scholar 

  97. Hunter JD, Nye ER, Heslop JH, O’Donnell TV (1968) Middle-aged men on a twenty-week jogging programme. 2. Changes in weight, fatness, blood pressure and serum lipids. N Z Med J 67(429):288

    CAS  PubMed  Google Scholar 

  98. Kim IH (2004) [The effects of aerobic exercise on hormones, blood lipids and body composition in middle-aged obese women according to beta 3-adrenergic receptor gene polymorphisms]. Taehan Kanho Hakhoe Chi 34(6):1108

    Google Scholar 

  99. Maruf FA, Akinpelu AO, Salako BL (2014) A randomized controlled trial of the effects of aerobic dance training on blood lipids among individuals with hypertension on a thiazide. High Blood Press Cardiovasc Prev 21(4):275–283

    Article  CAS  PubMed  Google Scholar 

  100. Tambalis K, Panagiotakos DB, Kavouras SA, Sidossis LS (2009) Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 60(5):614–632

    Article  PubMed  Google Scholar 

  101. Thackray AE, Barrett LA, Tolfrey K (2018) Sex differences in postprandial lipaemia after acute high-intensity interval running in young people. J Sports Sci 36(15):1673–1681

    Article  PubMed  Google Scholar 

  102. Khan AS, Sane DC, Thomas W, Sonntag WE (2002) Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 54(1):25

    Article  CAS  PubMed  Google Scholar 

  103. Blumenthal JA, Emery CF, Madden DJ, George LK, Coleman RE, Riddle MW, Mckee DC, Reasoner J, Williams RS (1989) Cardiovascular and behavioral effects of aerobic exercise training in healthy older men and women. J Gerontol 44(5):147–157

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ningbo Medical Science and Technology project (2016Z01), Ningbo Health Branding Subject Fund (PPXK2018-01), and Ningbo Huamei Research Fund (2017HMKY04).

Competing financial interests: The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, N., Ye, H. (2020). Exercise and Hyperlipidemia. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_5

Download citation

Publish with us

Policies and ethics