Skip to main content

Biological and Nonbiological Approaches for Treatment of Cr(VI) in Tannery Effluent

  • Chapter
  • First Online:
Emerging Eco-friendly Green Technologies for Wastewater Treatment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 18))

Abstract

Leather tanneries are major source of hexavalent chromium contamination in the biosphere. Chromium (Cr) is being considered as an essential heavy metal extensively used in different industrial sectors for example, leather, paint, textile, and electroplating. A characteristic feature of chromate is its environmental mobility and consequently is a cause of environmental risk. Cr(VI) belongs to group A human carcinogen due to its mutagenicity, carcinogenicity, and teratogenicity in plants, animals, and humans, therefore causing serious health issues in all living beings. Conventional methods for chromate removal includes ion exchange, chemical precipitation, reverse osmosis, and electrochemical from tannery effluents. These procedures are effective but require high energy and chemical consumption that may produce secondary problems such as corrosion, spillage, and toxicity. So, the need of the hour is to develop eco-friendly techniques for efficient Cr(VI) removal. Therefore, bioremediation is an effective alternate for reclamation of contaminated sites. Bioremediation is the biological approach to degrade heavy metals using indigenous microorganisms. Microbes such as bacteria, fungi, yeast, and algae have the ability to survive under harsh environmental conditions. These microbes are proficient to reduce toxic Cr(VI) into less toxic Cr(III) by various cellular mechanisms. Therefore, environment friendly, economical, and effective strategies are needed to reduce chromate pollution in the surroundings. Thus, this chapter gives detailed information on production and properties of tannery effluent, environmental pollution, and health hazards of tannery effluent, biological and nonbiological methodologies for the effluent remediation. Moreover, the pros and cons of current processes have also been briefly discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addour L, Belhoucine D, Bouldries N, Comeau Y, Pauss A, Mameri N (1999) Zinc uptake by Streptomyces rimosus biomass using a packed bed column. J Chem Technol Biotechnol 74:1089–1095

    Article  CAS  Google Scholar 

  • Agency for Toxic Substance and Disease Registry (ATSDR) (2015) Toxicological profile for chromium. U.S. Department of Health and Human Services, Public Health Services, ATSDR, Atlanta

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  Google Scholar 

  • Ali A, Saeed K, Mabood F (2016) Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alex Eng J 55(3):2933–2942

    Article  Google Scholar 

  • Alvarez-Bernal D, Contreras-Ramos SM, Trujillo-Tapia N, Olalde-Portugal V, Frías-Hernández JT, Dendooven L (2006) Effects of tanneries wastewater on chemical and biological soil characteristics. Appl Soil Ecol 33(3):269–277

    Article  Google Scholar 

  • Amatussalam A, Abubacker MN, Rajendran RB (2011) In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium. Indian J Exp Biol 49(12):925–931

    CAS  Google Scholar 

  • Anderson RA (1989) Essentiality of Cr in humans. Sci Total Environ 86:75–81

    Article  CAS  Google Scholar 

  • Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:S35–S41

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  CAS  Google Scholar 

  • Barrera-Dıaz C, Urena-Nunez F, Campos E, Palomar-Pardavé M, Romero-Romo M (2003) A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater. Radiat Phys Chem 67(5):657–663

    Article  CAS  Google Scholar 

  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J Hazard Mater 223:1–12

    Article  CAS  Google Scholar 

  • Basaran B, UlaÅŸ M, Bitlisli BO, Aslan A (2008) Distribution of Cr (III) and Cr (VI) in chrome tanned leather. Indian J Chem Technol 15:511–514

    CAS  Google Scholar 

  • Bento FM, Camargo FA, Okeke BC, William FT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96(9):1049–1055

    Article  CAS  Google Scholar 

  • Bharagava RN, Yadav S, Chandra R (2014) Antibiotic and heavy metal resistance properties of bacteria isolated from the aeration lagoons of common effluent treatment plant (CETP) of tannery industries (Unnao, India). Ind. J Biotechnol 13:514–519

    CAS  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2018) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol 75(2):259–272

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162:1514–1521

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341

    Article  CAS  Google Scholar 

  • Chen JM, Hao OJ (1998) Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol 28(3):219–251

    Article  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegradation 59(1):8–15

    Article  CAS  Google Scholar 

  • Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manag 91:2238–2247

    Article  CAS  Google Scholar 

  • Chrysochoou M, Johnston CP, Dahal G (2012) A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J Hazard Mater 201:33–42

    Article  CAS  Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. In: Advances in bioremediation of wastewater and polluted soil, Naofumi Shiomi, IntechOpen. https://doi.org/10.5772/60770

    Google Scholar 

  • Coetzee JJ, Bansal N, Chirwa EM (2018) Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. In: Exposure and health. pp 1–12

    Article  Google Scholar 

  • Cooman K, Gajardo M, Nieto J, Bornhardt C, Vidal G (2003) Tannery wastewater characterization and toxicity effects on Daphnia spp. Environ Toxicol Int J 18(1):45–51

    Article  CAS  Google Scholar 

  • Dakiky M, Khamis M, Manassra A, Mer’Eb M (2002) Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6(4):533–540

    Article  CAS  Google Scholar 

  • Devi BD, Thatheyus A, Ramya D (2017) Bioremoval of hexavalent chromium, using Pseudomonas fluorescens. J Microbiol Biotechnol Res 2(5):727–735

    Google Scholar 

  • Eccles H (1995) Removal of heavy metals from effluent streams—why select a biological process? Int Biodeter Biodegr 35(1–3):5–16

    Article  CAS  Google Scholar 

  • EPA (1990) Draft report Government of Punjab, Lahore. Environment Protection Agency, Government of Punjab, Lahore, p 127

    Google Scholar 

  • EPA (2000) Wastewater technology sheet: chemical precipitation. United State Environmental Protection. EPA 832-F-00-018. http://www.epa.Gov/own/mtb/chemical_precipitation.pdf. Accessed 7 July 2010

  • Fonseca B, Pazos M, Sanroman MA (2011) Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers. Environ Sci Pollut Res Int 19:1800–1808

    Article  CAS  Google Scholar 

  • Fruchter J (2002) Peer reviewed: in-situ treatment of chromium-contaminated groundwater. Environ Sci Technol 36:23

    Article  Google Scholar 

  • Gu H, Rapole S, Huang Y, Cao D, Luo Z, Suying W, Guo Z (2013) Synergistic interactions between multi-walled carbon nanotubes and toxic hexavalent chromium. J Mater Chem A 1:2011–2021

    Article  CAS  Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78(8):967–973

    CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res 35(17):4079–4085

    Article  CAS  Google Scholar 

  • Gupta P, Rani R, Chandra A, Kumar V (2018) Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Sci Rep 8(1):4860

    Article  CAS  Google Scholar 

  • Habibul N, Hu Y, Wang YK, Chen W, Yu HQ, Sheng GP (2016) Bioelectrochemical chromium (VI) removal in plant-microbial fuel cells. Environ Sci Technol 50(7):3882–3889

    Article  CAS  Google Scholar 

  • Han I, Schlautman MA, Batchelor B (2000) Removal of hexavalent chromium from groundwater by granular activated carbon. Water Environ Res 72:29–39

    Article  CAS  Google Scholar 

  • Hauschild MZ (1993) Putrescine (1,4-diaminobutane) as an indicator of pollution-induced stress in higher plants: barley and rape stressed with Cr(III) or Cr(VI). Ecotoxicol Environ Saf 26:228–247

    Article  CAS  Google Scholar 

  • Haydar S, Aziz JA (2009) Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)—a case study of Saddiq Leather Works. J Hazard Mater 163(2–3):1076–1083

    Article  CAS  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Article  CAS  Google Scholar 

  • Igwe J, Abia AA (2006) A bioseparation process for removing heavy metals from waste water using biosorbents. Afr J Biotechnol 5(12):1167–1179

    Google Scholar 

  • Iqbal M, Saeed A, Akhtar N (2002) Petiolar felt-sheath of palm: a new biosorbent for the removal of heavy metals from contaminated water. Bioresour Technol 81(2):151–153

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere 207:255–266

    Article  CAS  Google Scholar 

  • Joshi NC (2018) Biosorption: a green approach for heavy metal removal from water and waste waters. Res J Life Sci Bioinform Pharm Chem Sci 4(1):59–69

    CAS  Google Scholar 

  • Jouraiphy A, Amir S, El Gharous M, Revel JC, Hafidi M (2005) Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int Biodeter Biodegr 56(2):101–108

    Article  CAS  Google Scholar 

  • Jyoti J, Awasthi M (2014) Bioremediation of wastewater chromium through microalgae: a review. Int J Eng Res Technol 3(6):1210–1215

    Google Scholar 

  • Kamaludeen SP, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003) Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol 178:93–164. Springer, New York

    CAS  Google Scholar 

  • Khan AG (2001) Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26(5–6):417–423

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19

    Article  CAS  Google Scholar 

  • Kishor R, Bharagava RN, Saxena G (2019) Industrial wastewaters: the major sources of dye contamination in the environment, ecotoxicological effects, and bioremediation approaches. In: Bharagava RN (ed) Recent advances in environmental management. CRC Press Taylor & Francis. ISBN-13: 978-0-8153-8314-7

    Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Wilkens MM (1994) Environmental chemistry of Cr. Northeast Geol 16(1):14–17

    Google Scholar 

  • Kumar D, Tripathi DK, Chauhan DK (2014) Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments. Biol Trace Elem Res 157(2):164–174

    Article  CAS  Google Scholar 

  • Langard S (1983) The carcinogenicity of chromium compounds in man and animals. In: Burrows D (ed) Chromium: metabolism and toxicity. CRC Press, Boca Raton, pp 13–30

    Google Scholar 

  • Lee M, Paik IS, Kim I, Kang H, Lee S (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J Hazard Mater 144(1–2):208–214

    Article  CAS  Google Scholar 

  • Lofrano G, Meriç S, Zengin GE, Orhon D (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461:265–281

    Article  CAS  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32(20):3087–3093

    Article  CAS  Google Scholar 

  • Madhavi V, Reddy AVB, Reddy KG, Madhavi G, Prasad TNKV (2013) An overview on research trends in remediation of chromium. Res J Recent Sci 2277:2502

    Google Scholar 

  • Mahmoud MS, Mohamed SA (2017) Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation. HBRC J 13(3):245–254

    Article  Google Scholar 

  • Mangkoedihardjo S, Ratnawati R, Alfianti N (2008) Phytoremediation of hexavalent chromium polluted soil using Pterocarpus indicus and Jatropha curcas L. World Appl Sci J 4(3):338–342

    Google Scholar 

  • Marshall WE, Champagne ET (1995) Agricultural byproducts as adsorbents for metal ions in laboratory prepared solutions and in manufacturing wastewater. J Environ Sci Health Part A 30(2):241–261

    Google Scholar 

  • Martorell MM, Fernández PM, Fariña JI, Figueroa LI (2012) Cr (VI) reduction by cell-free extracts of Pichia jadinii and Pichia anomala isolated from textile-dye factory effluents. Int Biodeter Biodegrad 71:80–85

    Article  CAS  Google Scholar 

  • Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36(19):4757–4764

    Article  CAS  Google Scholar 

  • Metalsorb (2004) Heavy metal chelating agents. http://www.snf-group.com/IMG/pdf/Heavy_Metal_-METALSORB_E.pdf. Accessed 9 July 2010

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34(1):1–32

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:762–811

    Article  CAS  Google Scholar 

  • Mohapatra RK, Parhi PK, Thatoi H, Panda CR (2017) Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India. Chem Ecol 33(2):114–130

    Article  CAS  Google Scholar 

  • Molokwane PE, Meli KC, Nkhalambayausi-Chirwa EM (2008) Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res 42(17):4538–4548

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011) Biosorption of chromium (VI) by spent cyanobacterial biomass from a hydrogen fermentor using Box-Behnken model. Int Biodeter Biodegr 65(4):656–663

    Article  CAS  Google Scholar 

  • Morales-Barrera L, Cristiani-Urbina E (2008) Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water Air Soil Pollut 187(1–4):327–336

    CAS  Google Scholar 

  • Morales-Barrera L, de Maria Guillen-Jimenez F, Ortiz-Moreno A, Villegas-Garrido TL, Sandoval-Cabrera A, Hernández-Rodríguez CH, Cristiani-Urbina E (2008) Isolation, identification and characterization of a Hypocrea tawa strain with high Cr (VI) reduction potential. Biochem Eng J 40(2):284–292

    Article  CAS  Google Scholar 

  • Naidu R, Kookana RS, Cox J, Mowat D, Smith LH (2000) Fate of chromium at tannery waste contaminated sites at Mount Barker, South Australia. In: Naidu R, Willett IR, Mahimairaja S, Kookana RS, Ramasamy K (eds) Towards better management of soils contaminated with tannery waste, proceedings no 88. Australian Council for International Agricultural Research, Canberra, pp 57–70

    Google Scholar 

  • Narayani M, Shetty KV (2013) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43(9):955–1009

    Article  CAS  Google Scholar 

  • National Research Council (1993) In situ bioremediation: when does it work? National Academies Press, Stockholm

    Google Scholar 

  • NEESA (1993) Precipitation of metals from ground water. NEESA Document Number 20.2-051.6. Novel Energy and Environmental Support Activity, Port Hueneme

    Google Scholar 

  • NIOSH (1977) Registry of toxic effects of chemical substances. DHEW (NIOSH) Pub. 78-104-B. National Institute for Occupational Safety and Health, Cincinnati 2:296, 590

    Google Scholar 

  • Padda IUH, Asim M (2019) What determines compliance with cleaner production? An appraisal of the tanning industry in Sialkot, Pakistan. Environ Sci Pollut Res 26(2):1733–1750

    Article  Google Scholar 

  • Papp JF (2004) Chromium use by market in the United States. In: Paper presented at 10th international ferroalloys congress. Cape Town, South Africa, pp 1–4

    Google Scholar 

  • Park D, Yun YS, Park JM (2005) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40(7):2559–2565

    Article  CAS  Google Scholar 

  • Park D, Lim SR, Yun YS, Park JM (2007) Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70(2):298–305

    Article  CAS  Google Scholar 

  • Pawlak Z, Zak S, Zablocki L (2005) Removal of hazardous metals from groundwater by reverse osmosis. Pol J Environ Stud 15(4):579–583

    Google Scholar 

  • Pawlisz AV (1997) Canadian water quality guidelines for Cr. Environ Toxicol Water Qual 12(2):123–161

    Article  CAS  Google Scholar 

  • Pei QH, Shahir S, Raj AS, Zakaria ZA, Ahmad WA (2009) Chromium (VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25(6):1085–1093

    Article  CAS  Google Scholar 

  • Prevot AB, Ginepro M, Peracaciolo E, Zelano V, De Luca DA (2018) Chemical vs bio-mediated reduction of hexavalent chromium. An in-vitro study for soil and deep waters remediation. Geoderma 312:17–23

    Article  CAS  Google Scholar 

  • Raman NM, Asokan S, Sundari NS, Ramasamy S (2018) Bioremediation of chromium (VI) by Stenotrophomonas maltophilia isolated from tannery effluent. Int J Environ Sci Technol 15(1):207–216

    Article  CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332

    Article  CAS  Google Scholar 

  • Ran ZH, Bi WA, Cai QT, Li XX, Min LI, Dong HU, Guo DB, Juan WA, Chun FA (2016) Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomed Environ Sci 29(2):127–136

    Google Scholar 

  • Revathi K, Haribabu TE, Sudha PN (2011) Phytoremediation of chromium contaminated soil using sorghum plant. Int J Environ Sci 2(2):417

    CAS  Google Scholar 

  • Reynolds MF, Peterson Roth EC, Bespalov IA, Johnston T, Gurel VM, Menard HL, Zhitkovich A (2009) Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers. Cancer Res 69:1071–1079

    Article  CAS  Google Scholar 

  • Rezaei H (2016) Biosorption of chromium by using Spirulina sp. Arab J Chem 9(6):846–853

    Article  CAS  Google Scholar 

  • Romanenko V, Koren’kov V (1977) Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions. Mikrobiologiia 46:414–417

    CAS  Google Scholar 

  • Romero-González J, Peralta-Videa JR, Rodríguez E, Delgado M, Gardea-Torresdey JL (2006) Potential of Agave lechuguilla biomass for Cr(III) removal from aqueous solutions: thermodynamic studies. Bioresour Technol 97(1):178–182

    Article  CAS  Google Scholar 

  • Salunkhe PB, Dhakephalkar PK, Paknikar KM (1998) Bioremediation of hexavalent Cr in soil microcosms. Biotechnol Lett 20:749–751

    Article  CAS  Google Scholar 

  • San Keskin NO, Celebioglu A, Sarioglu OF, Uyar T, Tekinay T (2018) Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf B Biointerfaces 161:169–176

    Article  CAS  Google Scholar 

  • Saravanabhavan S, Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2004) Natural leathers from natural materials: progressing toward a new arena in leather processing. Environ Sci Technol 38(3):871–879

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160(2–3):349–355

    Article  CAS  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2017) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69

    CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol 249:71–131

    Google Scholar 

  • Sen M, Dastidar MG (2010) Chromium removal using various biosorbents. Iran J Environ Health Sci Eng 7(3):182–190

    Google Scholar 

  • Shakoori A, Makhdoom M, Haq R (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53(3):348–351

    Article  CAS  Google Scholar 

  • Sibi G (2016) Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy Environ 1(2):172–177

    Article  Google Scholar 

  • Singh R, Kumar M, Bishnoi NR (2016) Development of biomaterial for chromium (VI) detoxification using Aspergillus flavus system supported with iron. Ecol Eng 91:31–40

    Article  Google Scholar 

  • Song Z, Williams CJ, Edyvean RGJ (2000) Sedimentation of tannery wastewater. Water Res 34(7):2171–2176

    Article  CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Singh M, Kalra A (2013) In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut Res 20(3):1661–1674

    Article  CAS  Google Scholar 

  • Springer H (1994) Treatment of industrial waste of the leather industry-is it still a major problem? J Am Leather Chem Assoc 89:153–187

    CAS  Google Scholar 

  • Srivastava S, Thakur IS (2006) Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. J Soil Biol Biochem 38:1904–1911

    Article  CAS  Google Scholar 

  • Tarley CRT, Arruda MAZ (2004) Biosorption of heavy metals using rice milling by-products. Characterization and application for removal of metals from aqueous solutions. Chemosphere 54(7):905–915 

    Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Theologou E, Panagiotakis I, Dermatas D, Chrysochoou M, Toskos T (2013) Remediation technologies for hexavalent chromium contaminated aquifers. In: Proceedings of the 13th international conference on environmental science and technology, Athens, Greece.

    Google Scholar 

  • Tunay O, Kabdasli I, Orhon D, Ates E (1995) Characterization and pollution profile of leather tanning industry in Turkey. Water Sci Technol 32(12):1

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2005) Guidelines for carcinogen risk assessment. EPA/630/P-03/001. US EPA, Washington, DC

    Google Scholar 

  • U.S. EPA (1986) U.S. EPA Guidelines for the health risk assessment of chemical mixtures (PDF) EPA/630/R-98/002 (1986)

    Google Scholar 

  • Vaca MV, Callejas RLP, Gehr R, Cisneros BJN, Alvarez PJJ (2001) Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange. Water Res 35(2):373–337

    Article  Google Scholar 

  • Vankar PS, Bajpai D (2008) Phyto-remediation of chrome-VI of tannery effluent by Trichoderma species. Desalination 222(1–3):255–262

    Article  CAS  Google Scholar 

  • Vendruscolo F, da Rocha Ferreira GL, Antoniosi Filho NR (2017) Biosorption of hexavalent chromium by microorganisms. Int Biodeter Biodegr 119:87–95

    Article  CAS  Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV-Sorbex, Inc., St. Lambert (Montreal). (ISBN 0-9732983-0-8) Quebec, Canada

    Google Scholar 

  • Wani PA, Wahid S, Singh R, Kehinde AM (2018) Antioxidant and chromium reductase assisted chromium (VI) reduction and Cr (III) immobilization by the rhizospheric Bacillus helps in the remediation of Cr(VI) and growth promotion of soybean crop. Rhizosphere 6:23–30

    Article  Google Scholar 

  • Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 265(1–3):126–134

    Article  CAS  Google Scholar 

  • Xie X, Fu J, Wang H, Liu J (2010) Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. Afr J Biotechnol 9(26):4056–4066

    CAS  Google Scholar 

  • Xu Y, Xu T (2008) Heavy metal complexes wastewater treatment with chelation precipitation. In: 2nd International conference on bioinformatics and biomedical engineering, IEEE, pp 2789–2793

    Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1):139–156

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Higher Education Commission of Pakistan for the financial assistance of the project NRPU (3743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rida Batool .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalsoom, A., Batool, R. (2020). Biological and Nonbiological Approaches for Treatment of Cr(VI) in Tannery Effluent. In: Bharagava, R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-15-1390-9_7

Download citation

Publish with us

Policies and ethics