Skip to main content

Non-coding RNAs and Autophagy

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Autophagy is an important metabolic pathway of cells. Cells degrade harmful intracellular components with the aid of autophagy to maintain a healthy state. In recent decades, the study of non-coding RNA in the regulation of autophagy has been a hot area. Mounting evidence indicates that many ncRNAs are involved in the dynamic process of autophagy, and further studies were undertaken to dissect the detailed cellular and molecular mechanisms underlying this process. In this chapter, we mainly summarized the regulation of different non-coding RNAs in autophagy as well as the detailed mechanisms. Based on these findings, we also discussed the roles of non-coding RNAs in the diagnosis, treatment, and prognosis of diseases with an emphasis on their use as potential biomarkers and therapeutic targets for different diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-methyladenine

ADAR1:

Adenosine to inosine acting on RNA enzyme 1

ANXA2:

Annexin A2

APP:

Amyloid precursor protein

ceRNA:

Competitive endogenous RNA

circRNA:

Circular RNA

ciRNAs:

Circular intronic RNAs

CSD:

Cold shock domain

DFCP1:

Double FYVE-containing protein 1

EcircRNAs:

Exonic circRNAs

EIcircRNAs:

Exonic-intronic circRNAs

eIF4A:

Eukaryotic initiation factor 4A

gRNA:

Guide RNA

lncRNA:

Long non-coding RNA

miRNA:

Micro RNA

mRNA:

Message RNA

mt tRNAs:

Mitochondrial tRNAs

ncRNA:

Noncoding RNA

NMD:

Nonsense-mediated mRNA decay

PI3P:

Phosphatidylinositol 3-phosphate

piRNA:

Piwi-interacting

Plekhm1:

Pleckstrin homology domain-containing protein family M member 1

pre-miRNA:

Precursormicro RNA

pri-mRNA:

Primary micro RNA

PS1:

Presenilin 1

RBP:

RNA-binding protein

RES:

Ribsome entrysite

RISC:

RNA-induced silencing complex

ROS:

Reactive oxygen species

rRNA:

Ribosomal RNA

siRNA:

Small interfering

snoRNA:

Small nucleolar RNA

snRNA:

Small nuclear RNA

SR:

Serine/argine

TIPARP:

TCDD inducible poly[ADP-ribose] polymerase

tRNA:

Transfer RNA

ULK:

Unc-51-like kinase

UTR:

Untranslation region

Vps:

Vesicular protein sorting

References

  • Cheng Z, Du ZQ, Zhai BH et al (2018) U1 small nuclear RNA overexpression implicates autophagic-lysosomal system associated with AD. Neurosci Res 136:48–55

    Article  CAS  Google Scholar 

  • Frankel LB, Lubas M, Lund AH (2017) Emerging connections between RNA and autophagy. Autophagy 13:3–23

    Article  CAS  Google Scholar 

  • Han B, Chao J, Yao HH (2018a) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31–44

    Article  CAS  Google Scholar 

  • Han B, Zhang Y, Zhang YH et al (2018b) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14:1164–1184

    Article  CAS  Google Scholar 

  • Hu Z, Xia B, Postnikoff SDL et al (2018) Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan. Elife 7

    Google Scholar 

  • Huang RR, Zhang Y, Han B et al (2017) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 13:1722–1741

    Article  CAS  Google Scholar 

  • Jady BE, Ketele A, Kiss T (2018) Dynamic association of human mRNP proteins with mitochondrial tRNAs in the cytosol. RNA 24:1706–1720

    Article  CAS  Google Scholar 

  • Jurong Y, Dapeng C, Yani H et al (2013) MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age 35:11–22

    Article  Google Scholar 

  • Legnini I, Timoteo GD, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37

    Article  CAS  Google Scholar 

  • Liu XF, Cai SY, Zhang CF et al (2018a) Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res 46:9601–9616

    Article  CAS  Google Scholar 

  • Liu YB, Zou W, Yang PG et al (2018b) Autophagy-dependent ribosomal RNA degradation is essential for maintaining nucleotide homeostasis during C. elegans development. Elife 7

    Google Scholar 

  • Meng XW, Li X, Zhang PJ et al (2017) Circular RNA: an emerging key player in RNA world. Brief Bioinform 18:547–557

    CAS  PubMed  Google Scholar 

  • Ouimet M, Koster S, Sakowski E et al (2016) Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 17:677–686

    Article  CAS  Google Scholar 

  • Qu SB, Liu ZC, Yang XS et al (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett 414:301–309

    Article  CAS  Google Scholar 

  • Tang SY, Tan G, Jiang X et al (2016) An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget 7:73257–73269

    PubMed  PubMed Central  Google Scholar 

  • Wu H, Wang F, Hu S et al (2012) MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal 24:2179–2186

    Article  CAS  Google Scholar 

  • Yan XL, Zhang DD, Wu W et al (2017) Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Can Res 77:6704–6716

    Article  CAS  Google Scholar 

  • Yan F, Wang X, Zeng Y (2018) 3D genomic regulation of lcnRNA and Xist in X chromosome. In: Seminars in cell & developmental biology, S1084952118301599

    Google Scholar 

  • Yang LX, Wang HY, Shen Q et al (2017) Long non-coding RNAs involved in autophagy regulation. Cell Death Dis 8

    Article  Google Scholar 

  • Yang L, Han B, Zhang Y et al (2018) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 14:404–418

    Article  CAS  Google Scholar 

  • Zhang JA, Zhou BR, Xu Y et al (2016) MiR-23a-depressed autophagy is a participant in PUVA- and UVB-induced premature senescence. Oncotarget 7:37420–37435

    PubMed  PubMed Central  Google Scholar 

  • Zhou ZB, Niu YL, Huang GX et al (2018) Silencing of circRNA.2837 plays a protective role in sciatic nerve injury by sponging the miR-34 family via regulating neuronal autophagy. Mol Ther-Nucl Acids 12:718–729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghong Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, H., Han, B., Zhang, Y., Shen, L., Huang, R. (2019). Non-coding RNAs and Autophagy. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_10

Download citation

Publish with us

Policies and ethics