Skip to main content

The Two-Component System: Transducing Environmental and Hormonal Signals

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

In response to external stimuli, protein phosphorylation plays a significant role in signal transduction which regulates growth and development in plants. Histidine and aspartate phosphorylation (multistep phosphorelay) operating in two-component system (TCS) is one of the signalling mechanisms which regulate a plethora of processes in plants. The two-component system members in plants have been found to function in the perception of phytohormones such as cytokinins and ethylene as well as subsequent downstream signalling. In addition, the TCS members have also been shown to regulate the responses to various environmental stresses. The TCS is at the heart of the crosstalk between development and environmental stress responses. In this chapter, we describe the TCS and the role of its various members in plants towards growth and controlling development as influenced by internal (hormones) and external (environmental stress) signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME, Mikal E (eds) (1992) Ethylene in plant biology. Academic Press, San Diego

    Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Alm E, Huang K, Arkin A (2006) The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol 2:e143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AF, Barba-Ostria C, Silva-Jiménez H, Georgellis D (2016) Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol 18:3210–3226

    Article  CAS  PubMed  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anantharaman V, Iyer LM, Aravind L (2007) Comparative Genomics of Protists: New Insights into the Evolution of Eukaryotic Signal Transduction and Gene Regulation. Annu Rev Microbiol 61:453–475

    Article  CAS  PubMed  Google Scholar 

  • Appleby JL, Parkinson JS, Bourret RB (1996) Signal Transduction via the Multi-Step Phosphorelay: Not Necessarily a Road Less Travelled. Cell 86:845–848

    Article  CAS  PubMed  Google Scholar 

  • Argyros RD, Mathews DE, Chiang Y-H, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20:2102–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekker M, de MJ T, Hellingwerf KJ (2006) The role of two-component regulation systems in the physiology of the bacterial cell. Sci Prog 89:213–242

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB (1999) Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4:269–274

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C and Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science (80-) 241: 1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Esch JJ, Hall AE, Rodriguez FI, Binder BM (1998) The ethylene-receptor family from Arabidopsis: structure and function. Philos Trans R Soc B Biol Sci 353:1405–1412

    Article  CAS  Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci U S A 107:14502–14507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Brown JL, North S, Bussey H (1993) SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol 175:6908–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552

    Article  CAS  PubMed  Google Scholar 

  • Caesar K, Thamm AMK, Witthöft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62:5571–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C (2016) Q&A: How do plants respond to ethylene and what is its importance? BMC Biol 14:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SC, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. elife 2:e00675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y-F, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Choi D, Lee S, Ryu C-M, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16:388–394

    Article  CAS  PubMed  Google Scholar 

  • Chu ZX, Ma Q, Lin YX, Tang XL, Zhou YQ, Zhu SW, Fan J, Cheng BJ (2011) Genome-wide identification, classification, and analysis of two-component signal system genes in maize. Genet Mol Res 10:3316–3330

    Article  CAS  PubMed  Google Scholar 

  • Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE, Klee HJ (2000) Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coba de la Peña T, Cárcamo CB, Almonacid L, Zaballos A, Lucas MM, Balomenos D, Pueyo JJ (2008) A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta 227:769–779

    Article  PubMed  CAS  Google Scholar 

  • Cotter PA, Jones AM (2003) Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 11:367–373

    Article  CAS  PubMed  Google Scholar 

  • Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: Phytochrome-Like photoreceptors from nonphotosynthetic. Science 286:2517–2520

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Dong H, Mu J, Ren B, Zheng B, Ji Z, Yang W-C, Liang Y, Zuo J (2010) Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Qin L, Inouye M (1999) Histidine kinases: diversity of domain organization. Mol Microbiol 34:633–640

    Article  CAS  PubMed  Google Scholar 

  • Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47–54

    Article  PubMed  CAS  Google Scholar 

  • Ferreira FJ, Kieber JJ (2005) Cytokinin signaling. Curr Opin Plant Biol 8:518–525

    Article  CAS  PubMed  Google Scholar 

  • Forst SA, Roberts DL (1994) Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res Microbiol 145:363–373

    Article  CAS  PubMed  Google Scholar 

  • Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  CAS  PubMed  Google Scholar 

  • Frébortová J, Plíhal O, Florová V, Kokáš F, Kubiasová K, Greplová M, Šimura J, Novák O, Frébort I (2017) Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria). J Phycol 53:703–714

    Article  PubMed  CAS  Google Scholar 

  • Gahlaut V, Mathur S, Dhariwal R, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2014) A multi-step phosphorelay two-component system impacts on tolerance against dehydration stress in common wheat. Funct Integr Genomics 14:707–716

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2015a) Appearance and elaboration of the ethylene receptor family during land plant evolution. Plant Mol Biol 87:521–539

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2015b) Ethylene receptors in plants – why so much complexity? F1000Prime Rep 7: 39–50

    Google Scholar 

  • Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galperin MY, Makarova KS, Wolf YI, Koonin EV (2018) Phyletic distribution and lineage-specific domain architectures of archaeal two-component signal transduction systems. J Bacteriol 200:e00681–e00617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci 95:7825–7829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grefen C, Städele K, Růzicka K, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  CAS  PubMed  Google Scholar 

  • Gruhn N, Heyl A (2013) Updates on the model and the evolution of cytokinin signaling. Curr Opin Plant Biol 16:569–574

    Article  CAS  PubMed  Google Scholar 

  • Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A (2014) A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. Plant Physiol 165:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  CAS  PubMed  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  PubMed Central  Google Scholar 

  • Hall BP, Shakeel SN, Amir M, Haq NU, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor etr1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schäfer E, Kudla J, Harter K (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 23:3290–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Liu X, Ye L, Pan C, Chen L, Zou T, Lu G (2016a) Genome-wide identification and expression analysis of two-component system genes in tomato. Int J Mol Sci 17:1204–1224

    Article  PubMed Central  CAS  Google Scholar 

  • He Y, Liu X, Zou T, Pan C, Qin L, Chen L, Lu G (2016b) Genome-wide identification of two-component system genes in cucurbitaceae crops and expression profiling analyses in cucumber. Front Plant Sci 7:899

    PubMed  PubMed Central  Google Scholar 

  • Hejatko J, Pernisoa M, Eneva T, Palme K, Brzobohaty B (2003) The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Gen Genomics 269:443–453

    Article  CAS  Google Scholar 

  • Héricourt F, Chefdor F, Bertheau L, Tanigawa M, Maeda T, Guirimand G, Courdavault V, Larcher M, Depierreux C, Bénédetti H, Morabito D, Brignolas F, Carpin S (2013) Characterization of histidine-aspartate kinase HK1 and identification of histidine phosphotransfer proteins as potential partners in a Populus multistep phosphorelay. Physiol Plant 149:188–199

    Article  PubMed  CAS  Google Scholar 

  • Héricourt F, Chefdor F, Djeghdir I, Larcher M, Lafontaine F, Courdavault V, Auguin D, Coste F, Depierreux C, Tanigawa M, Maeda T, Glévarec G, Carpin S (2016) Functional divergence of poplar histidine-aspartate kinase hk1 paralogs in response to osmotic stress. Int J Mol Sci 17:2061

    Article  PubMed Central  CAS  Google Scholar 

  • Heyl A, Schmülling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488

    Article  CAS  PubMed  Google Scholar 

  • Heyl A, Brault M, Frugier F, Kuderova A, Lindner A-C, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE (2013) Nomenclature for members of the two-component signaling pathway of plants. Plant Physiol 161:1063–1065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill K, Mathews DE, Kim HJ, Street IH, Wildes SL, Chiang Y-H, Mason MG, Alonso JM, Ecker JR, Kieber JJ, Schaller GE (2013) Functional characterization of type-B response regulators in the Arabidopsis cytokinin response. Plant Physiol 162:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7:766–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Lamparter T (1999) Prokaryotes and phytochrome. The connection to chromophores and signaling. Plant Physiol 121:1059–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Chen H-C, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin Signaling Networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  • Imamura A, Kiba T, Tajima Y, Yamashino T, Mizuno T (2003) In vivo and in vitro characterization of the arr11 response regulator implicated in the his-to-asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:122–131

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Nishihama R, Kohchi T (2017) Evolutionary origin of phytochrome responses and signaling in land plants. Plant Cell Environ 40:2502–2508

    Article  CAS  PubMed  Google Scholar 

  • Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three Type-B Response Regulators, ARR1, ARR10 and ARR12, Play Essential but Redundant Roles in Cytokinin Signal Transduction Throughout the Life Cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57

    Article  CAS  PubMed  Google Scholar 

  • Ishida K, Niwa Y, Yamashino T, Mizuno T (2009) A genome-wide compilation of the two-component systems in Lotus japonicus. DNA Res 16:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Tyagi A, Khurana J (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol 6:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jennifer W, To PC, Haberer G, Ferreira FJ, Deruè J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling. Plant Cell 16:658–671

    Article  CAS  Google Scholar 

  • Jeon J, Kim J (2013) Arabidopsis response Regulator1 and Arabidopsis histidine phosphotransfer Protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Chang C (2015) Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiol 169:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci 109:19486–19491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1:14004

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627

    Article  CAS  PubMed  Google Scholar 

  • Kang NY, Cho C, Kim J (2013) Inducible Expression of Arabidopsis Response Regulator 22 (ARR22), a Type-C ARR, in Transgenic Arabidopsis Enhances Drought and Freezing Tolerance. PLoS One 8:e79248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karan R, Singla-Pareek SL, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9:411–417

    Article  CAS  PubMed  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. Arab B 12:e0168

    Article  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Ryu H, Cho Y-H, Scacchi E, Sabatini S, Hwang I (2012) Cytokinin-facilitated proteolysis of Arabidopsis response regulator 2 attenuates signaling output in two-component circuitry. Plant J 69:934–945

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135:660–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooß S, Lamparter T (2017) Cyanobacterial origin of plant phytochromes. Protoplasma 254:603–607

    Article  PubMed  CAS  Google Scholar 

  • Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR (2000) Evolution of two-component signal transduction. Mol Biol Evol 17:1956–1970

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Li Y, Smalle JA (2014) Cytokinin signaling stabilizes the response activator ARR1. Plant J 78:157–168

    Article  CAS  PubMed  Google Scholar 

  • Kwon O, Georgellis D, Lin EC (2000) Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J Bacteriol 182:3858–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DJ, Park J-Y, Ku S-J, Ha Y-M, Kim S, Kim MD, Oh M-H, Kim J (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Gen Genomics 277:115–137

    Article  CAS  Google Scholar 

  • Levit M, Liu Y, Surette M, Stock J (1996) Active site interference and asymmetric activation in the chemotaxis protein histidine kinase CheA. J Biol Chem 271:32057–32063

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li G, Wang H, Wang Deng X (2011) Phytochrome signaling mechanisms. Arab B 9:e0148

    Article  Google Scholar 

  • Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Pryer KM, Mathews S (2015a) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852–7863

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H (2015b) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163:670–683

    Article  CAS  PubMed  Google Scholar 

  • Liang YS, Ermawati N, Cha J-Y, Jung MH, Su’udi M, Kim MG, Ha S-H, Park C-G, Son D (2010) Overexpression of an AP2/ERF-type Transcription factor CRF5 confers pathogen resistance to Arabidopsis plants. J Korean Soc Appl Biol Chem 53:142–148

    Article  CAS  Google Scholar 

  • Liu Z, Zhang M, Kong L, Lv Y, Zou M, Lu G, Cao J, Yu X (2014) Genome-wide identification, phylogeny, duplication, and epression analyses of two-component system genes in chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res 21:379–396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lohrmann J, Sweere U, Zabaleta E, Bäurle I, Keitel C, Kozma-Bognar L, Brennicke A, Schäfer E, Kudla J, Harter K (2001) The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Mol Gen Genomics 265:2–13

    Article  CAS  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  CAS  PubMed  Google Scholar 

  • Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor ahp6 regulate cell fate during vascular development. Science 311:94–98

    Article  PubMed  CAS  Google Scholar 

  • Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T (2000) Genes encoding pseudo-response regulators: insight into his-to-asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol 41:791–803

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol 43:58–69

    Article  CAS  PubMed  Google Scholar 

  • Mason MG, Li J, Mathews DE, Kieber JJ, Schaller GE (2004) Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiol 135:927–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple Type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, Eric Schaller G (2010) Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J 64:753–763

    Article  CAS  PubMed  Google Scholar 

  • Maxwell BB, Kieber JJ (2010) Cytokinin signal transduction. In: Davies P.J. (ed) Plant Hormones. Springer, Dordrecht, pp 329–357

    Chapter  Google Scholar 

  • McCarty DR, Chory J (2000) Conservation and innovation in plant signaling pathways. Cell 103:201–209

    Article  CAS  PubMed  Google Scholar 

  • Mcmanus MT (ed) (2012) Annual plant reviews, vol. 44: the plant hormone ethylene. Wiley, New York

    Google Scholar 

  • Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17

    Article  CAS  PubMed  Google Scholar 

  • Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560

    Article  CAS  PubMed  Google Scholar 

  • Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the fls2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154:391–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira-Rodado V, Veerabagu M, Witthöft J, Teply J, Harter K, Desikan R (2012) Identification of two-component system elements downstream of AHK5 in the stomatal closure response of Arabidopsis thaliana. Plant Signal Behav 7:1467–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Kaneko T, Tabata S (1996) Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res 3:407–414

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki and Tran L-SP (2010) Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 17: 303–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monedero V, Revilla-Guarinos A, Zúñiga M (2017) Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria. Adv Appl Microbiol 99:1–51

    Article  PubMed  Google Scholar 

  • Montsant A, Allen AE, Coesel S, De Martino A, Falciatore A, Mangogna M, Siaut M, Heijde M, Jabbari K, Maheswari U, Rayko E, Vardi A, Apt KE, Berges JA, Chiovitti A, Davis AK, Thamatrakoln K, Hadi MZ, Lane TW, Lippmeier JC, Martinez D, Parker MS, Pazour GJ, Saito MA, Rokhsar DS, Armbrust EV, Bowler C (2007) Identification and comparative genomic analysis of signaling and regulatory components in the diatom thalassiosira pseudonana. J Phycol 43:585–604

    Article  Google Scholar 

  • Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741

    Article  CAS  PubMed  Google Scholar 

  • Müller B and Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 2007: cm5

    PubMed  Google Scholar 

  • Müller-Dieckmann H-J, Grantz AA, Kim S-H (1999) The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7:1547–1556

    Article  PubMed  Google Scholar 

  • Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52:1709–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22:594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KH, Van Ha C, Nishiyama R, Watanabe Y, Leyva-González MA, Fujita Y, Tran UT, Li W, Tanaka M, Seki M, Schaller GE, Herrera-Estrella L, Tran LS (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci U S A 113:3090–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A 110:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262:566–569

    Article  CAS  PubMed  Google Scholar 

  • Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parish T (2014) Two-Component Regulatory Systems of Mycobacteria. Microbiol Spectr 2:0010–2013

    Article  CAS  Google Scholar 

  • Pekárová B, Szmitkowska A, Dopitová R, Degtjarik O, Žídek L, Hejátko J (2016) Structural aspects of multistep phosphorelay-mediated signaling in plants. Mol Plant 9:71–85

    Article  PubMed  CAS  Google Scholar 

  • Pham J, Liu J, Bennett MH, Mansfield JW, Desikan R (2012) Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytol 194:168–180

    Article  CAS  PubMed  Google Scholar 

  • Pils B, Heyl A (2009) Unraveling the evolution of cytokinin signaling. Plant Physiol 151:782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci U S A 99:15800–15805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 “Two-Component” osmosensor. Cell 86:865–875

    Article  CAS  PubMed  Google Scholar 

  • Quon KC, Marczynski GT, Shapiro L (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93

    Article  CAS  PubMed  Google Scholar 

  • Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103:11081–11085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockwell NC, Su Y-S, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    Article  PubMed  Google Scholar 

  • Romanov GA, Lomin SN, Schmülling T (2018) Cytokinin signaling: from the ER or from the PM? That is the question! New Phytol 18:41–53

    Article  Google Scholar 

  • Rzewuski G, Sauter M (2008) Ethylene biosynthesis and signaling in rice. Plant Sci 175:32–42

    Article  CAS  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  CAS  PubMed  Google Scholar 

  • Salome PA, McClung CR (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17:791–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salome PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components cca1, lhy, prr7, and prr9 in temperature compensation. Plant Cell 22:3650–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Kieber JJ, Shiu S-H (2008) Two-component signaling elements and histidyl-aspartyl phosphorelays. Arab B 6:e0112

    Article  Google Scholar 

  • Schaller GE, Shiu S-H, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21:R320–R330

    Article  CAS  PubMed  Google Scholar 

  • Shakeel SN, Wang X, Binder BM and Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5: plt010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanks CM, Rice JH, Zubo Y, Schaller GE, Hewezi T, Kieber JJ (2016) The role of cytokinin during infection of Arabidopsis thaliana by the cyst nematode Heterodera schachtii. Mol Plant-Microbe Interact 29:57–68

    Article  CAS  PubMed  Google Scholar 

  • Sharan A, Soni P, Nongpiur RC, Singla-Pareek SL, Pareek A (2017) Mapping the ‘Two-component system’ network in rice. Sci Rep 7:9287–9299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi X, Wegener-Feldbrügge S, Huntley S, Hamann N, Hedderich R, Søgaard-Andersen L (2008) Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190:613–624

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin A-Y, Han Y-J, Baek A, Ahn T, Kim SY, Nguyen TS, Son M, Lee KW, Shen Y, Song P-S, Kim JI (2016) Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 7:11545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shull TE, Kurepa J, Smalle JA (2016) Cytokinin signaling promotes differential stability of type-B ARRs. Plant Signal Behav 11:e1169354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh G, Kumar R (2012) Genome-wide insilico analysis of plant two component signaling system in woody model plant Populus trichocarpa. Res Plant Biol 2:13–23

    CAS  Google Scholar 

  • Singh A, Kushwaha HR, Soni P, Gupta H, Singla-Pareek SL, Pareek A (2015) Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Front Plant Sci 6:711

    PubMed  PubMed Central  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spíchal L (2012) Cytokinins - recent news and views of evolutionally old molecules. Funct Plant Biol 39:267–284

    Article  CAS  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67:157–168

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zhang Q, Wu J, Zhang L, Jiao X, Zhang S, Zhang Z, Sun D, Lu T, Sun Y (2014) Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiol 165:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor his-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42:107–113

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N, Kamoun S, Terauchi R (2015) MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol 33:445–449

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Saito S, Saito C, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators. BMC Evol Biol 10:126–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka T, Saha SK, Tomomori C, Ishima R, Liu D, Tong KI, Park H, Dutta R, Qin L, Swindells MB, Yamazaki T, Ono AM, Kainosho M, Inouye M, Ikura M (1998) NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396:88–92

    Article  CAS  PubMed  Google Scholar 

  • Thomason P, Kay R (2000) Eukaryotic signal transduction via histidine-aspartate phosphorelay. J Cell Sci 113:3141–3150

    CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueguchi C, Sato S, Kato T, Tabata S (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  CAS  PubMed  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerabagu M, Elgass K, Kirchler T, Huppenberger P, Harter K, Chaban C, Mira-Rodado V (2012) The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. Plant J 72:721–731

    Article  CAS  PubMed  Google Scholar 

  • Voet-van-Vormizeele J, Groth G (2008) Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol Plant 1:380–387

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Sun Y-P, Chen W-L, Li J-H, Zhang C-C (2002) Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 217:155–165

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 100:352–357

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F, Qin T, Wang Y, Dong W, Zhang A, Tan M, Jiang M (2015) OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. J Integr Plant Biol 57:213–228

    Article  CAS  PubMed  Google Scholar 

  • Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13:219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmü T (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li W, Cao J, Meng F, Yu Y, Huang J, Jiang L, Liu M, Zhang Z, Chen X, Miyamoto K, Yamane H, Zhang J, Chen S, Liu J (2017) Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J 89:338–353

    Article  CAS  PubMed  Google Scholar 

  • Yeh K-C, Lagarias JC (1998) Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 95:13976–13981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh K-C, Wu S-H, Murphy J, Lagarias C (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277:1505–1508

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama A, Yamashino T, Amano Y-I, Tajima Y, Imamura A, Sakakibara H, Mizuno T (2006) Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol 48:84–96

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Liu Z, Song X, Johnson C, Yu X, Sundaresan V (2016) The CKI1 histidine kinase specifies the female gametic precursor of the endosperm. Dev Cell 37:34–46

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco-Zorrilla JM, Zhang W, Hill K, Raines T, Solano R, Kieber JJ, Loraine AE, Schaller GE (2017) Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci U S A 114:E5995–E6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

RCN and PG acknowledge Council for Scientific and Industrial Research (CSIR) for their research fellowship. AS acknowledges University Grants Commission (UGC), while DS acknowledges Department of Biotechnology (DBT) for her research fellowship. SLS-P and AP would like to thank Indo-US Science and Technology Forum (IUSSTF) for the grant of funds via Indo-US Advanced Bioenergy Consortium (IUABC). Research in the lab of AP is also supported from funds received from Department of Biotechnology, Government of India, International Atomic Energy Agency (Vienna) and Department of Science and Technology (DST-PURSE) through Jawaharlal Nehru University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nongpiur, R.C., Gupta, P., Sharan, A., Singh, D., Singla-Pareek, S.L., Pareek, A. (2019). The Two-Component System: Transducing Environmental and Hormonal Signals. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_10

Download citation

Publish with us

Policies and ethics