Skip to main content

Surfactin: An Emerging Biocontrol Tool for Agriculture Sustainability

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Agricultural Sustainability

Abstract

The agricultural productivity is a serious concern to meet the ever-increasing demands of growing human population all over the world. Thus, to attain sustainable agriculture, without harming the environment, use of different green compounds is a prerequisite. This chapter highlights the use of surfactins as a biocontrol agent, which is an eco-friendly and cost-effective approach for managing plant diseases. Biosurfactants especially surfactin produced by Bacillus and Pseudomonas species can serve as green surfactants, and they exhibit wide biocontrol activity. Surfactins are eco-friendly and less toxic and thereby have several widespread applications in food, agriculture, cosmetics, and pharmaceutical industries. Several rhizosphere and plant-associated microbes capable of producing surfactin play vital role in motility, signaling, and biofilm formation, indicating that biosurfactants (surfactins) direct plant-microbe interaction. In agriculture, surfactins can be used against plant pathogens as biocontrol agents and for increase in the bioavailability of nutrient for beneficial plant-associated microbes. Particularly, antifungal activity of surfactins and their role in surface colonization by pathogens and beneficial bacteria results in biocontrol activity. Therefore, exploring surfactins from bacterial isolates for applications in agriculture warrants a detailed research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:289–303

    Article  CAS  Google Scholar 

  • Al-Ajlani MM, Sheikh MA, Ahmad Z, Hasnain S (2007) Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microb Cell Factories 17:1475–2859

    Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  Google Scholar 

  • Athukorala SNP, Fernando WGD, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI – TOF mass spectrometry. Can J Microbiol 55:1021–1032

    Article  CAS  Google Scholar 

  • Balmer D, Planchamp C, Mauch-Mani B (2013) On the move: induced resistance in monocots. J Exp Bot 64:1249–1261

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  • Bernheim AW, Avigad LS (1970) Nature and properties of a cytolytic agent produced by Bacillus subtilis. J Gen Microbiol 61:361–366

    Article  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions–a review. Appl Microbiol Biotechnol 50:520–529

    Article  CAS  Google Scholar 

  • Cao XH, Wang AH, Wang CL, Mao DZ, Lu MF, Cui YQ, Jiao RZ (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362

    Article  CAS  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  CAS  Google Scholar 

  • Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47:180–186

    Article  CAS  Google Scholar 

  • Cheng YH, Zhang N, Han JC, Chang CW, Hsiao FSH, Yu YH (2018) Optimization of surfactin production from Bacillus subtilis in fermentation and its effects on Clostridium perfringens-induced necrotic enteritis and growth performance in broilers. Anim Physiol Anim Nutr 102(5):1232–1244. https://doi.org/10.1111/jpn.12937

    Article  CAS  Google Scholar 

  • Chiocchini C (2006) The surfactin biosynthetic complex of Bacillus subtilis: COM domain-mediated biocombinatorial synthesis, and single step purification of native multi-modular NRPSs and multi-enzyme complexes. Ph. D Dissertation. Universität Marburg, Marburg/Lahn, Germany

    Google Scholar 

  • Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, Von Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in B. subtilis. Mol Microbiol 8:821–831

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptides biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  Google Scholar 

  • Desoignies N, Schramme F, Ongena M, Legrève A (2013) Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxa betae. Mol Plant Pathol 14:416–421

    Article  CAS  Google Scholar 

  • Dietel K, Beator B, Budiharjo A, Fan B, Borriss R (2013) Bacterial traits involved in colonization of Arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42. Plant Pathol J 29(1):59–66

    Article  Google Scholar 

  • Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q (2017) Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front Microbiol 8:1973. https://doi.org/10.3389/fmicb.2017.01973

    Article  PubMed  PubMed Central  Google Scholar 

  • Farzaneh M, Shi ZQ, Ahmadzadeh M, Hu LB, Ghassempour A (2016) Inhibition of the Aspergillus flavus growth and aflatoxin B1 contamination on pistachio nut by fengycin and surfactin-producing Bacillus subtilis UTBSP1. Plant Pathol J 32(3):209–215

    Article  CAS  Google Scholar 

  • Fernandes PAV, de Arruda IR, dos Santos AFAB, de Araujo AA, Maior AMS, Ximenes EA (2007) Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Braz J Microbiol 38:704–709

    Article  Google Scholar 

  • Guerra-Santos LH, Kappeli O, Fiechter A (1984) P. aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra-Santos LH, Kappeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol 64:666–690

    Google Scholar 

  • Haddad NI, Wang J, Mu B (2009) Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35(12):1597–1604

    Article  Google Scholar 

  • Isa MHM, Coraglia DE, Frazier RA, Jauregi P (2007) Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. J Membr Sci 296:51–57

    Article  CAS  Google Scholar 

  • Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matsumoto M (1995) Significance of beta-sheet formation for micellization and surface-adsorption of surfactin. Colloids Surf B: Biointerfaces 6:341–348

    Article  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468

    Article  CAS  Google Scholar 

  • Juang RS, Chen HL, Chen YS (2008) Resistance-in-series analysis in cross-flow ultrafiltration of fermentation broths of Bacillus subtilis culture. J Membr Sci 323:193–200

    Article  CAS  Google Scholar 

  • Kakinuma A, Hori M, Isono M, Tamura G, Arima K (1969) Determination of amino acid sequence in surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis. Agric Biol Chem 33:971–979

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  Google Scholar 

  • Korenblum E, Araujo LV, Guimarães CR, Souza LM, Sassaki G et al (2012) Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria. BMC Microbiol 12:252–260

    Article  CAS  Google Scholar 

  • Lambalot RH, Gebring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walesh CT (1996) A new enzyme superfamily. The phosphopantetheinyl transferase. Chem Biol 3:923–936

    Article  CAS  Google Scholar 

  • Le Mire G, Siah A, Brisset M-N, Gaucher M, Deleu M, Jijakli MH (2018) Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and Jasmonic acid-dependent defense responses. Agriculture 8(1):11. https://doi.org/10.3390/agriculture8010011

    Article  CAS  Google Scholar 

  • Maget-Dana R, Ptak M (1995) Interactions of surfactin with membrane models. Biophys J 68:1937–1943

    Article  CAS  Google Scholar 

  • Mandal SM, Barbosa AEAD, Franco OL (2013) Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 31:338–345

    Article  CAS  Google Scholar 

  • Mireles JR, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101:1–8

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198

    Article  CAS  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Mulligan CN, Gibbs BF (1993) Factors influencing the economics of biosurfactants. In: Biosurfactants, production, properties and applications. Marcel Dekker Inc., New York, pp 339–345

    Google Scholar 

  • Nakano MM, Corbell N, Besson J, Zuber P (1992) Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin in Bacillus subtilis. Mol Gen Genet 232:313–321

    CAS  PubMed  Google Scholar 

  • Nihorimbere V, Marc Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Nitschke M, Costa S (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    Article  CAS  Google Scholar 

  • Noah KS, Bruhn DF, Bala GA (2005) Surfactin production from potato process effluent by Bacillus subtilis in a Chemostat. Appl Biochem Biotechnol 122:465–474

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  Google Scholar 

  • Persson A, Molin G, Weibull C (1990a) Physiological and morphological changes induced by nutrient limitation of Pseudomonas fluorescens 378 in continuous culture. Appl Environ Microbiol 56:686–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persson A, Molin G, Anderson N, Sjoholm J (1990b) Biosurfactant yields and nutrient consumption of Pseudomonas fluorescens 378 studied in a microcomputer controlled mutifermintation system. Biotechnol Bioeng 36:252–255

    Article  CAS  Google Scholar 

  • Pfeifer BA, Admineral SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyktidesin a metabolically engineered strain of E. coli. Science 291:1790–1972

    Article  CAS  Google Scholar 

  • Ponte Rocha MV, Gomes Barreto RV, Melo VM, Barros Goncalves LR (2009) Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl Biochem Biotechnol 155:366–378

    Article  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    Article  CAS  Google Scholar 

  • Rivardo F, Martinotti MG, Turner RJ, Ceri H (2010) The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Can J Microbiol 56:272–278

    Article  CAS  Google Scholar 

  • Roggiani M, Dubnaum D (1993) Com A, a phosphorylated response regulator protein of B. subtilis binds to the promoter region of sfa. J Bacteriol 175:3182–3187

    Article  CAS  Google Scholar 

  • Rongswang N, Thanjyavarn J, Thanjyavarn S, Kamayam T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of halotolerant B. subtilis BBK–1 which produces three kinds of lipopeptides, bacillomycin L, plipastin and surfactin. Extremophiles 6:499–504

    Article  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016. https://doi.org/10.1007/s00253-012-4641-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401. https://doi.org/10.3390/ijms17030401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarwar A, Hassan MN, Imran M, Iqbal M, Majeed S, Brader G, Sessitsch A, Hafeez FY (2018) Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res 209:1–13

    Article  CAS  Google Scholar 

  • Seydlova G, Patek M, Svobodova J (2011) Construction of a surfactin non-producing mutant of Bacillus subtilis as a tool for membrane resistance study. Fed Eur Biochem Soc J 276:222–222

    Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin – a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48:119–134

    CAS  Google Scholar 

  • Tang JS, Gao H, Hong K, Yu Y, Jiang MM, Lin HP, Ye WC, Yao XS (2007) Complete assignments of H-1 and C-13 NMR spectral data of nine surfactin isomers. Magn Reson Chem 45:792–796

    Article  CAS  Google Scholar 

  • Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103:2331–2339

    Article  CAS  Google Scholar 

  • Wei YH, Lai C, Chang JS (2007) Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem 42:40–45

    Article  CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

  • Zeraik AE, Nitschke M (2010) Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr Microbiol 61(6):554–559

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are thankful to the Higher Education Commission (HEC) of Pakistan for the financial support provided under project #2511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fauzia Yusuf Hafeez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hafeez, F.Y., Naureen, Z., Sarwar, A. (2019). Surfactin: An Emerging Biocontrol Tool for Agriculture Sustainability. In: Kumar, A., Meena, V. (eds) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability . Springer, Singapore. https://doi.org/10.1007/978-981-13-7553-8_10

Download citation

Publish with us

Policies and ethics