Skip to main content

Use of Plant Nutrients in Improving Abiotic Stress Tolerance in Wheat

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

Drought and salinity stresses are serious threat limitations for crop growth, productivity and consequently for sustainable of agriculture. The adversative impacts of drought and salinity stresses can be alleviated via different agricultural practices such as application of crop establishment or application of plant nutrients for maintaining a suitable level of water in plant leaves due to osmotic adjustment and stomatal conductance performance, consequently improving plant growth and productivity. Therefore, the aim of the present chapter is to make a review of the abiotic stress effects on wheat growth and yield and how to ameliorate the abiotic stress in wheat through plant nutrient applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate PE, Dardanellib JL, Cantareroc MG, Maturanoc M, Melchiorid RJM, Sueroa EE (2004) Climatic and water availability effects on water-use efficiency in wheat. Crop Sci 44:474–483

    Article  Google Scholar 

  • Abdel-Motagally FMF, El-Zohri M (2018) Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J Saudi Soc Agric Sci 17:178–185

    Google Scholar 

  • Ahmad SA, Haddad R (2011) Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech J Genet Plant Breed 47:17–27

    Article  Google Scholar 

  • Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci 85:43–50

    Article  CAS  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91

    Article  CAS  Google Scholar 

  • Ahmed M, Fayyaz ul H, Khurshid Y (2011) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Manag 98:1808–1812

    Article  Google Scholar 

  • Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang G (2013) The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Datnoff LE (2001) The economic potential of silicon for integrated management and sustainable rice production. Crop Prot 20:43–48

    Article  CAS  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue L, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Ashraf M, Harris P (2005) Abiotic stresses: plant resistance through breeding and molecular approaches. CRC Press, Boca Raton

    Google Scholar 

  • Bagci SA, Ekiz H, Yilmaz A, Cakmak I (2007) Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J Agron Crop Sci 193:198–206

    Article  CAS  Google Scholar 

  • Balla K, Rakszegi M, Li Z, Bekes F, Bencze S, Veisz O (2011) Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci 29:117–128

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Berry P, Ramirez-Villegas J, Branseley H (2013) Regional impacts of climate change on agriculture and the role of adaptation. In: Jackson M, Ford-Lloyd B, Parry M (eds) Plant genetic resource and climate change. CABI, Boston, pp 78–97

    Chapter  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol 49:481–500

    Article  CAS  Google Scholar 

  • Bukhari MA, Ashraf MY, Ahmad R, Waraich EA, Hameed M (2015) Improving drought tolerance potential in wheat (Triticum aestivum L.) through exogenous silicon supply. Pak J Bot 47(5):1641–1648

    CAS  Google Scholar 

  • Cakmak I (2000) Tansley review no. 111—possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Chaves MM, Maroco J, Pereira J (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Rerkasem B (1993) Effects of boron on pollen viability in wheat. In: Barrow NJ (ed) Plant nutrition from genetic engineering to field practice. Kluwer Academic Publishers, Dordrecht, pp 405–407

    Chapter  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362. https://doi.org/10.1371/journal.pone.0156362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell B, Huang LB (1997) Physiological response of plants to low boron. Plant Soil 193:103–120

    Article  CAS  Google Scholar 

  • Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci Hortic 102:467–473

    Article  Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U (2009) Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plant 31:1129–1138

    Article  CAS  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  PubMed  Google Scholar 

  • Elawad SH, Street JJ, Gascho GJ (1982) Response of sugarcane to silicate source and rate. I. Growth and yield. Agron J 74(3):481–484

    Article  CAS  Google Scholar 

  • Elawad SH, Allen LH, Gascho GJ (1985) Influence of UV-B radiation and soluble silicates on the growth and nutrient concentration of sugarcane. Soil Crop Sci Soc Fla 44:134–141

    CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Campuzano G, Miralles DJ, Slafer GA (2008) Genotypic variability and response to water stress of pre- and post-anthesis phases in triticale. Eur J Agron 28:171–177

    Article  Google Scholar 

  • FAO: Food and Agriculture Organization of the United Nations (2014) GIEWS-crop prospects and food situation. FAO, Rome. [cited 2014 Apr 28]. Available from: http://www.fao.org/GIEWS/ENGLISH/cpfs/I4256e/I4256E.html

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  CAS  PubMed  Google Scholar 

  • Foresight Final Project Report (2011) The future of food and farming: challenges and choices for global sustainability. The Government Office for Science, London, p 208

    Google Scholar 

  • Gevrek MN, Atasoy GD (2012) Effect of post anthesis drought on certain agronomical characteristics of wheat under two different nitrogen application conditions. Turk J Field Crops 17:19–23

    Google Scholar 

  • Gong H, Chen K, Chen G, Wang S, Zhang C (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26(5):1055–1063

    Article  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52:592–596

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885–1903

    Article  CAS  Google Scholar 

  • Hafez EH, Seleiman MF (2017) Response of barley quality traits, yield and antioxidant enzymes to water-stress and chemical inducers. Intl J Plant Prod 11(4):477–490

    Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolour. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Hattori T, Sonobe K, Inanaga S, An P, Tsuji W, Araki H, Eneji AE, Morita S (2007) Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ Exp Bot 60:177–182

    Article  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Inoue T, Inanaga S, Sugimoto Y, El-Siddig K (2004) Contribution of pre-anthesis assimilates and current photosynthesis to grain yield, and their relationship to drought resistance in wheat cultivars grown under different soil moisture. Photosynthetica 42:99–104

    Article  Google Scholar 

  • IPCC (2007) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, NY, USA

    Google Scholar 

  • IPCC (2008) Kundzewicz ZW, Palutikof J, Wu S (eds) Climate change and water. Technical paper of the intergovernmental panel on climate change. Cambridge University Press, New York, NY, USA

    Google Scholar 

  • Karamer PJ (1983) Plant water relations. Academic, New York

    Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kaya C, Kirnak H, Higgs D (2001) Effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). J Plant Nutr 24:25–27

    Google Scholar 

  • Kaya MD, Okcub G, Ataka M, Cikilic Y, Kolsaricia O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Langridge P, Reynolds MP (2015) Genomic tools to assist breeding for drought tolerance. Curr Opin Biotechnol 32:130–135

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Liang Y, Shen Q, Shen Z, Ma T (1996) Effects of silicon on salinity tolerance of two barley cultivars. 1. J Plant Nutr 19:173–183

    Article  CAS  Google Scholar 

  • Liang YC, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stress in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datonoff L, Korndofer G, Snyder G (eds) Silicon in agriculture. Elsevier, New York, pp 17–39

    Chapter  Google Scholar 

  • Ma CC, Li QF, Gao YB, Xin TR (2004) Effects of silicon application on drought resistance of cucumber plants. Soil Sci Plant Nutr 50:623–632

    Article  Google Scholar 

  • Manikavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Babu RC (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138

    Article  CAS  Google Scholar 

  • Matoh T, Kairusmee P, Takahashi E (1986) Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295–304

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht, p 864

    Book  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM et al (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol 169:765–777

    Article  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nawaz F, Ahmad R, Waraich EA, Naeem MS, Shabbir RN (2012) Nutrient uptake, physiological responses, and yield attributes of wheat (Triticum aestivum L.) exposed to early and late drought stress. J Plant Nutr 35:961–974

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA (2013) Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol Trace Elem Res 151:284–293

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, zur Nieden U (2001) Silicon and heavy tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  PubMed  Google Scholar 

  • Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111:373–382

    Article  Google Scholar 

  • Pan YC, Eow KL, Ling SH (1979) The effect of bagasse furnace ash on the growth of plant cane. Sugar J 42(7):14–16

    Google Scholar 

  • Pareek A, Sopory SK, Bohnert HJ, Govindjee (2009) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht

    Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123. https://doi.org/10.3389/fpls.2016.01123

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell N, Ji X, Ravash R, Edlington J, Dolferus R (2012) Yield stability for cereals in a changing climate. Funct Plant Biol 39:539–552

    Article  PubMed  Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Article  Google Scholar 

  • Prasad PVV, Pisipati SR, Momcilovic I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441

    Article  CAS  Google Scholar 

  • Rahimi A (2013) Seed priming improves the germination performance of cumin (Cuminum cyminum L.) under temperature and water stress. Ind Crop Prod 42:454–460

    Article  Google Scholar 

  • Raid RN, Anderson DL, Ulloa MF (1992) Influence of cultivar and amendment of soil with calcium silicate slag on foliar disease development and yield of sugarcane. Crop Prot 11(1):84–88

    Article  CAS  Google Scholar 

  • Raza AMS, Saleem MF, Anjum SA, Khaliq T, Wahid AM (2012) Foliar application of potassium under water deficit conditions improved the growth and yield of wheat (Triticum aestivum L.). J Anim Plant Sci 22:431–437

    Google Scholar 

  • Raza MAS, Saleem MF, Shah GM, Jamil M, Khan IH (2013) Potassium applied under drought improves physiological and nutrient uptake performances of wheat (Triticum Aestivun L.). J Soil Sci Plant Nutr 13(1):175–185

    Google Scholar 

  • Rios J, Rodrigues F, Debona D, Silva L (2014) Photosynthetic gas exchange in leaves of wheat plants supplied with silicon and infected with Pyricularia oryzae. Acta Physiol Plant 36:371–379

    Article  CAS  Google Scholar 

  • Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Rucker KS, Kvien CK, Holbrook CC, Hook JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 24:14–18

    Article  Google Scholar 

  • Ryan BM, Kirby JK, Degryse F, Harris H, McLaughlin MJ, Scheiderich K (2013a) Copper speciation and isotope fractionation in plants, uptake and translocation mechanisms. New Phytol 199:367–368

    Article  CAS  PubMed  Google Scholar 

  • Ryan J, Rashid A, Torrent J, Yau SK, Ibrikci H, Sommer R, Erenoglu EB, Sparks DL (2013b) Micronutrient constraints to crop production in the Middle East-West Asia region: significance, research and management. Adv Agron 122:1–84

    Article  CAS  Google Scholar 

  • Sacala E (2009) Role of silicon in plant resistance to water stress. J Elem 14:619–630

    Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004a) Mechanism for deactivation of Rubisco under moderate heat stress. Physiol Plant 122:513–519

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004b) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Article  Google Scholar 

  • Sarwar N, Malhi SS, Zia MA, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  PubMed  Google Scholar 

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22(12):1853–1903

    Article  CAS  Google Scholar 

  • Seleiman M, Abdel-Aal M (2018) Response of growth, productivity and quality of some Egyptian wheat cultivars to different irrigation regimes. Egypt J Agron 40(3):313–330

    Article  Google Scholar 

  • Seleiman MF, Kheir AS (2018a) Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204:514–522

    Article  CAS  PubMed  Google Scholar 

  • Seleiman MF, Kheir AS (2018b) Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193:538–546

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Sharma A, Bhardwaj R (2014) Effect of seed pre-treatment with varying concentrations of salicylic acid on antioxidant response of wheat seedlings. Ind J Plant Physiol 19:205–209

    Article  Google Scholar 

  • Sistani KR, Savant NK, Reddy KC (1997) Effect of rice hull ash silicon on rice seedling growth. J Plant Nutr 20(1):195–201

    Article  CAS  Google Scholar 

  • Subbarao GV, Num NH, Chauhan YS, Johansen C (2000) Osmotic adjustment, water relation and carbohydrates remobilization in pigeon pea under water deficits. J Plant Physiol 157:651–659

    Article  CAS  Google Scholar 

  • Sun Y-Y, Sun Y-J, Wang M-T, Li X-Y, Guo X, Hu R, Ma J (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36:1931–1940

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc Publishers, Sunderland

    Google Scholar 

  • Tawfik KM (2008) Effect of water stress in addition to potassiomag application on mung bean. Aust J Basic Appl Sci 2:42–52

    CAS  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:193–231

    Article  Google Scholar 

  • Ulloa MF, Anderson DL (1991) Sugarcane cultivar response to calcium silicate slag on everglades histosols. ASSCT Annual meetings, New Orleans, LA

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Waseem M, Atharand HUR, Ashraf M (2006) Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pak J Bot 38:1127–1136

    Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688

    Article  PubMed  Google Scholar 

  • Wei L, Jia L, Hu X, Zhao F (1997) Advances in studies on the physiology and biochemistry of maize drought resistance. Agric Res Arid Areas 15(4):66–71

    Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J 5:60–67

    CAS  Google Scholar 

  • Westgate ME (1994) Water status and development of the maize endosperm and embryo during drought. Crop Sci 34:76–83

    Article  Google Scholar 

  • Xia S, Xiao L, Peng K (2001) Physiological effects of silicon in higher plants and its application in agricultural protection. Plant Physiol Commun 37(4):356–360

    CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational by pass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    Article  CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 26:409–430

    Article  Google Scholar 

  • Zhang H, Oweis T, Garabet S, Pala M (1998) Water use efficiency and transpiration efficiency of wheat under rainfed and irrigation conditions in Mediterranean environment. Plant Soil 201:295–305

    Article  CAS  Google Scholar 

  • Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB et al (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and transinactive DRE binding factors in Brassica napus. J Biol Chem 281:10752–10759

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud F. Seleiman, Ahmed M.S. Kheir, (2018) Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204:514-522

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud F. Seleiman, Ahmed M.S. Kheir, (2018) Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204:514-522

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud F. Seleiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seleiman, M.F. (2019). Use of Plant Nutrients in Improving Abiotic Stress Tolerance in Wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_19

Download citation

Publish with us

Policies and ethics