Skip to main content

Electrical Discharge Diamond Grinding (EDDG): A Review

  • Conference paper
  • First Online:
Advances in Engineering Design

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Due to the lower productivity of electrical discharge machining (EDM) process, it is not widely used for machining purpose. So, a new hybrid machining process (HMP) has been discovered, namely electrical discharge diamond grinding (EDDG). This EDDG is the combination of electric discharge machining (EDM) and grinding wheel with metal-bonded diamond grit. EDDG gives better performance than EDM due to the spark generation the rotating diamond wheel. This paper aims to summarize the work done by various researchers on EDDG process along with developments in the same area. Various output responses such as Wheel Wear Rate (WWR), Surface Roughness (Ra), Average Surface Roughness (ASR) and Material Removal Rate (MRR) have been analysed by different researchers considering various factors like pulse current, wheel speed, pulse on time, duty factor, Abrasive Particle Size (APS), infeed, pulse off time and abrasive particle concentration (APC) as input parameters, to compare the performance of the process considering different configurations of EDDG. The study reveals that EDDG can be efficiently used for grinding, super alloys, MMCs, cremates and various combinations of carbide steel. Further, it was concluded that online dressing, thermal softening of the workpiece and de-clogging of the wheel are remarkable features of EDDG. This process has a great future scope as it provides us the surface finish in order of few nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wegener K, Bleicher F, Krajnik P, Hoffmeister HW, Brecher C (2017) Recent developments in grinding machines. CIRP Ann Manuf Technol 66(2):779–802. https://doi.org/10.1016/j.cirp.2017.05.006

    Article  Google Scholar 

  2. Singh GK, Yadava V, Kumar R (2010) Diamond face grinding of WC-Co composite with spark assistance: experimental study and parameter optimization. Int J Precis Eng Manuf 11(4):509–518. https://doi.org/10.1007/s12541-010-0059-3

    Article  Google Scholar 

  3. Koshy P, Jain VK, Lal GK (1996) Mechanism of material removal in electrical discharge diamond grinding. Int J Mach Tools Manuf 36(10):1173–1185 (1996). https://doi.org/10.1016/0890-6955(95)00103-4

  4. Yadav RS, Yadava V (2017) Experimental investigations on electrical discharge diamond peripheral surface grinding (EDDPSG) of hybrid metal matrix composite. J Manuf Process 27:241–251. https://doi.org/10.1016/j.jmapro.2017.04.004

    Article  Google Scholar 

  5. Kumar S, Choudhury SK (2007) Prediction of wear and surface roughness in electro-discharge diamond grinding. J Mater Process Technol 191:206–209. https://doi.org/10.1016/j.jmatprotec.2007.03.032

    Article  Google Scholar 

  6. Yadava V, Jain VK, Dixit PM (2005) Temperature distribution in the workpiece due to electro-discharge diamond surface grinding using FEM. Int J Manuf Technol Manag 7(2–4):246–267. https://doi.org/10.1504/IJMTM.2005.006832

    Article  Google Scholar 

  7. Kumar S, Choudhury SK (2007) Prediction of wear and surface roughness in electro-discharge diamond grinding. J Mater Process Technol 191:206–209. https://doi.org/10.1016/j.jmatprotec.2007.03.032

    Article  Google Scholar 

  8. Sunder S, Yadava V (2012) Development, experimental investigation and neural network modelling of surface-electrical discharge diamond grinding of Al-SiC metal matrix composite. Int J Abras Technol 5(3):223–244. https://doi.org/10.1504/IJAT.2012.051033

    Article  Google Scholar 

  9. Balaji PS, Yadava V (2013) Three dimensional thermal finite element simulation of electro-discharge diamond surface grinding. Simul Model Pract Theor 35:97–117. https://doi.org/10.1016/j.simpat.2013.03.007

    Article  Google Scholar 

  10. Choudhary R, Kumar H, Singh S (2013) Machining performance and surface integrity of AISI D2 die steel machined using electrical discharge surface grinding process. J Mater Eng Perform 22(12):3665–3673. https://doi.org/10.1007/s11665-013-0679-8

    Article  Google Scholar 

  11. Sunder S, Yadava V (2014) Modelling and optimisation of material removal rate and surface roughness in surface-electrical discharge diamond grinding process. Int J Ind Syst Eng 17(2):133–151. https://doi.org/10.1504/IJISE.2014.061990

    Article  Google Scholar 

  12. Agrawal SS, Yadava V (2015) Development and Experimental Study of Surface-Electrical Discharge Diamond Grinding of Al–10 wt%SiC Composite. J Inst Eng (India) 97(1):1–9. https://doi.org/10.1007/s40032-015-0183-z

    Article  Google Scholar 

  13. Yadav SKS, Yadava V (2013) Experimental investigation of electrical discharge diamond cut-off grinding of Ti Alloy. Mater Manuf Process 28:557–561. https://doi.org/10.1080/10426914.2012.718469

    Article  Google Scholar 

  14. Yadav SKS, Yadava V (2011) Neural network modelling and multi objective optimisation of electrical discharge diamond cut-off grinding (EDDCG). Int J Abras Technol 4(4):346–362. https://doi.org/10.1504/IJAT.2011.044509

    Article  Google Scholar 

  15. Yadav SKS, Yadava V (2013) Experimental investigations to study electrical discharge diamond cutoff grinding (EDDCG) machinability of cemented carbide. Mater Manuf Process 28(10):1077–1081. https://doi.org/10.1080/10426914.2013.792414

    Article  Google Scholar 

  16. Singh GK, Yadava V, Kumar R (2011) Experimental study and parameter optimization of electro-discharge diamond face grinding. Int J Abras Technol 4(1):14–40. https://doi.org/10.1504/IJAT.2011.039001

    Article  Google Scholar 

  17. Unune DR, Mali HS (2016) A study of multi objective parametric optimization of electric discharge diamond cut-off grinding of Inconel 718. Int J Abras Technol 7(3):187–199. https://doi.org/10.1504/IJAT.2016.078281

    Article  Google Scholar 

  18. Singh GK, Yadava V, Kumar R (2012) Robust parameter design and multi-objective optimization of electro-discharge diamond face grinding of HSS. Int J Mach Machinabil Mater 11(1):1–19. https://doi.org/10.1504/IJMMM.2012.044919

    Article  Google Scholar 

  19. Singh GK, Yadava V, Kumar R (2012) Modelling and optimisation of electro-discharge diamond face grinding of cemented carbide–cobalt composite. Int J Ind Syst Eng 12(2):141–164. https://doi.org/10.1504/IJISE.2012.048858

    Article  Google Scholar 

  20. Shrivastava PK, Dubey AK (2013) Experimental modeling and optimization of electric discharge diamond face grinding of metal matrix composite. Int J Adv Manuf Technol 69:2471–2480. https://doi.org/10.1007/s00170-013-5190-8

    Article  Google Scholar 

  21. Yadav RN, Yadava V, Singh GK (2014) Application of response surface methodology and genetic algorithm for optimisation of electro-discharge diamond face grinding of tungsten carbide-cobalt composite. Int J Ind Syst Eng 18(1):76–94. https://doi.org/10.1504/IJISE.2014.064342

    Article  Google Scholar 

  22. Yadav RN, Yadava V, Singh GK (2014) Application of non-dominated sorting genetic algorithm for multi-objective optimization of electrical discharge diamond face grinding process. J Mech Sci Technol 28(6):2299–2306. https://doi.org/10.1007/s12206-014-0520-9

    Article  Google Scholar 

  23. Yadav RN, Yadava V, Singh GK (2013) Multi-objective optimization of process parameters in Electro-discharge diamond face grinding based on ANN-NSGA-II hybrid technique. Front Mech Eng 8(3):319–332. https://doi.org/10.1007/s11465-013-0269-3

    Article  Google Scholar 

  24. Yadav RN, Yadava V (2014) Slotted-electrical discharge diamond cut-off grinding of Al/SiC/B4C hybrid metal matrix composite. J Mech Sci Technol 28(1):309–316. https://doi.org/10.1007/s12206-013-0968-z

    Article  Google Scholar 

  25. Yadav RN, Yadava V (2015) Application of soft computing techniques for modeling and optimization of slotted-electrical discharge diamond face grinding process. Trans Indian Inst Met 68(5):981–990. https://doi.org/10.1007/s12666-015-0536-6

    Article  Google Scholar 

  26. Yadav RS, Yadava V (2017) Performance study of Electrical discharge diamond face surface grinding (EDDFSG) on hybrid metal matrix composite. J Mech Sci Technol 31(1):317–325. https://doi.org/10.1080/10426914.2016.1221089

    Article  Google Scholar 

  27. Choudhury SK, Jain VK, Gupta M (1999) Electrical discharge diamond grinding of high speed steel. Mach Sci Technol 3(1):91–105. https://doi.org/10.1080/10940349908945685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, R., Gupta, A., Vates, U.K., Singh, G.K. (2019). Electrical Discharge Diamond Grinding (EDDG): A Review. In: Prasad, A., Gupta, S., Tyagi, R. (eds) Advances in Engineering Design . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6469-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6469-3_49

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6468-6

  • Online ISBN: 978-981-13-6469-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics