Skip to main content

Hairy Root-Mediated Biotransformation: Recent Advances and Exciting Prospects

  • Chapter
  • First Online:
Hairy Roots

Abstract

For 35 years, hairy roots have been explored as a promising platform for the production of a variety of compounds in different plant systems. Genetic/biochemical stability, the large-scale production of desired metabolites, low-cost cultural requirements and hormone-independent growth made hairy root as an efficient system for synthesis of new molecules required in pharmaceuticals industry. Moreover, these characteristics make hairy root as an ideal biotransformation system to convert administered organic compounds into useful analogs. Since, the synthesis of many natural products is significantly limited by regioselective and stereospecific properties, which subsequently complicates their chemical synthesis, biotransformation via hairy root systems is an alternative for creation of new therapeutic products because of its ability to perform regioselective and stereospecific reactions. Additionally, the hairy root system contained inherent enzymes, which tackle the occurring of biotransformation reactions, including methylation, oxidation, hydroxylation, glycosylation, reduction, isomerization, and esterification. Hence, the hairy root platform can be considered as an efficient and convenient biotransformation system for the production of new agents with desired physico-chemical properties, sufficient solubility, and low toxicity. The present review recapitulates overall reported progress in hairy root-mediated biotransformation, biotransformation strategies, reaction types involved in hairy root biotransformation, the application of hairy root biotransformation, and strategies involved in end product recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM (2003) Phytoremediation of 2, 4 dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Alfermann AW, Petersen M (1995) Natural product formation by plant cell biotechnology. Plant Cell Tissue Organ Cult 43(2):199–205. https://doi.org/10.1007/BF00052176

  • Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 12(1):128–152. https://doi.org/10.3390/md12010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade LH, Utsunomiya RS, Omori AT, Porto AL, Comasseto JV (2006) Edible catalysts for clean chemical reactions: bioreduction of aromatic ketones and biooxidation of secondary alcohols using plants. J Mol Catal B Enzym 38(2):84–90

    Article  CAS  Google Scholar 

  • Asada M, Shuler ML (1989) Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilization. Appl Microbiol Biotechnol 30(5):475–481. https://doi.org/10.1007/BF00263851

    Article  CAS  Google Scholar 

  • Asada Y, Saito H, Yoshikawa T, Sakamoto K, Furuya T (1993) Biotransformation of 18β-glycyrrhetinic acid by ginseng hairy root culture. Phytochemistry 34(4):1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Vivanco JM (2003) Root specific elicitation and exudation of fluorescent β-carbolines in transformed root cultures of Oxalis tuberosa. Plant Physiol Biochem 41(4):345–353

    Article  CAS  Google Scholar 

  • Banerjee S, Shang TQ, Wilson AM, Moore AL, Strand SE, Gordon MP, Lafferty Doty S (2002) Expression of functional mammalian P450 2E1 in hairy root cultures. Biotechnol Bioeng 77(4):462–466

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Singh S, Ur Rahman L (2012) Biotransformation studies using hairy root cultures – a review. Biotechnol Adv 30(3):461–468. https://doi.org/10.1016/j.biotechadv.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  • Basaran P, Rodriguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28(3):153–172

    Article  PubMed  Google Scholar 

  • Bhadra R, Wayment D, Hughes J, Shanks JV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33(3):446–452

    Article  CAS  Google Scholar 

  • Borzelleca J, Hayes JR, Condie LW, Egle JL Jr (1985) Acute and subchronic toxicity of 2, 4-dichlorophenol in CD-1 mice. Toxicol Sci 5(3):478–486

    Article  CAS  Google Scholar 

  • Brodelius P (1985) The potential role of immobilization in plant cell biotechnology. Trends Biotechnol 3(11):280–285

    Article  CAS  Google Scholar 

  • Brodelius P, Pedersen H (1993) Increasing secondary metabolite production in plant-cell culture by redirecting transport. Trends Biotechnol 11(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Buchanan ID, Nicell JA (1997) Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol Bioeng 54(3):251–261

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26(4):318–324. https://doi.org/10.1016/j.biotechadv.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV (2013) Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. Adv Biochem Eng Biotechnol 134:1–22. https://doi.org/10.1007/10_2013_179

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31(3):461–477. https://doi.org/10.1007/s00299-011-1165-0

    Article  CAS  PubMed  Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15(2):148–154. https://doi.org/10.1016/j.copbio.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  • Caron D, Coughlan AP, Simard M, Bernier J, Piché Y, Chênevert R (2005) Stereoselective reduction of ketones by Daucus carota hairy root cultures. Biotechnol Lett 27(10):713–716

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10(3):371. https://doi.org/10.1007/s11101-011-9210-8

    Article  CAS  Google Scholar 

  • De Araujo BS, Charlwood BV, Pletsch M (2002) Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Environ Pollut 117(2):329–335

    Google Scholar 

  • De Araujo BS, Dec J, Bollag JM, Pletsch M (2006) Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere 63(4):642–651. https://doi.org/10.1016/j.chemosphere.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho JC, Medeiros ABP, Vandenberghe LPS, Magalhães Jr AI, Soccol CR (2017) 34 – approaches for the isolation and purification of fermentation products. In: Current developments in biotechnology and bioengineering. Elsevier, p 783–805. https://doi.org/10.1016/B978-0-444-63662-1.00034-8

    Chapter  Google Scholar 

  • Delgado-Vargas F, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins, and betalains--characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40(3):173–289. https://doi.org/10.1080/10408690091189257

    Article  CAS  PubMed  Google Scholar 

  • DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13(3):425–453

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103(1):60–76

    Article  CAS  PubMed  Google Scholar 

  • Dornenburg H, Knorr D (1997) Challenges and opportunities for metabolite production from plant cell and tissue cultures. Food Technol (USA) 51(11):47–55

    CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Phytoremediation of metals and radionuclides. In: Singh SN, Tripahti RD (eds) Environmental bioremediation technologies. Springer, Berlín/New York, pp 189–209

    Chapter  Google Scholar 

  • Edwards B, Santillo D (1996) The stranger: the chlorine industry in India. Greenpeace Research Laboratories published by Greenpeace international

    Google Scholar 

  • Faria JM, Nunes IS, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Biotransformation of menthol and geraniol by hairy root cultures of Anethum graveolens: effect on growth and volatile components. Biotechnol Lett 31(6):897–903

    Google Scholar 

  • Faria JM, Sena I, Maleita CM, da Silva IV, Ascensao L, Abrantes I, Bennett RN, Mota M, Figueiredo AC (2014) In vitro co-culture of Solanum tuberosum hairy roots with Meloidogyne chitwoodi: structure, growth and production of volatiles. Plant Cell Tissue Organ Cult 118(3):519–530

    Google Scholar 

  • Favier L, Tonn C, Guerreiro E, Rotelli A, Pelzer L (1998) Anti-inflammatory activity of acetophenones from Ophryosporus axilliflorus. Planta Med 64(07):657–659

    Article  CAS  PubMed  Google Scholar 

  • Fecker LF, Rügenhagen C, Berlin J (1993) Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. Plant Mol Biol 23(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Fura A (2006) Role of pharmacologically active metabolites in drug discovery and development. Drug Discov Today 11(3):133–142. https://doi.org/10.1016/S1359-6446(05)03681-0

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Ushiyama M, Asada Y, Yoshikawa T (1989) Biotransformation of 2-phenylpropionic acid in root culture of Panax ginseng. Phytochemistry 28(2):483–487

    Article  CAS  Google Scholar 

  • Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19(3):175–199. https://doi.org/10.1016/S0734-9750(01)00054-4

    Article  CAS  PubMed  Google Scholar 

  • Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11(96):20140065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Habibi P, de Sa MF, da Silva AL, Makhzoum A, da L, Costa J, Borghetti IA, Soccol CR (2016) Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiol Mol Biol Plants 22(2):271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi P, De Sa MFG, Makhzoum A, Malik S, da Silva ALL, Hefferon K, Soccol CR (2017a) Bioengineering hairy roots: phytoremediation, secondary metabolism, molecular pharming, plant-plant interactions and biofuels. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer International Publishing, Cham, pp 213–251. https://doi.org/10.1007/978-3-319-48006-0_7

    Chapter  Google Scholar 

  • Habibi P, Prado GS, Pelegrini PB, Hefferon KL, Soccol CR, Grossi-de-Sa MF (2017b) Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tissue Organ Cult 130(3):449–467

    Article  CAS  Google Scholar 

  • Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. J Exp Bot 56(420):2611–2618. https://doi.org/10.1093/jxb/eri253

    Article  PubMed  Google Scholar 

  • Häkkinen ST, Seppänen-Laakso T, Oksman-Caldentey K-M, Rischer H (2015) Bioconversion to raspberry ketone is achieved by several non-related plant cell cultures. Front Plant Sci 6:1035

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada H, Tomi R, Asada Y, Furuya T (2002) Phytoremediation of bisphenol a by cultured suspension cells of Eucalyptus perriniana-regioselective hydroxylation and glycosylation. Tetrahedron Lett 43(22):4087–4089

    Article  CAS  Google Scholar 

  • Hashimoto T, Yamada Y (1983) Scopolamine production in suspension cultures and redifferentiated roots of Hyoscyamus niger. Planta Med 47(04):195–199

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo D, Martinez-Marquez A, Moyano E, Bru-Martinez R, Corchete P, Palazon J (2017) Bioconversion of stilbenes in genetically engineered root and cell cultures of tobacco. Sci Rep 7:45331. https://doi.org/10.1038/srep45331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata T, Shimoda K, Fujino T, Ohta S (2000) Biotransformation of hydroxycoumarins by the cultured cells of Nicotiana tabacum. J Mol Catal B Enzym 10(5):477–481

    Article  CAS  Google Scholar 

  • Hirata T, Shimoda K, Fujino T, S-y Y, Ohta S (2001) Diastereoselective formation of disaccharides from (RS)-1-phenylethanol by cultured cells of Catharanthus roseus. Bull Chem Soc Jpn 74(3):539–542

    Article  CAS  Google Scholar 

  • Ishihara K, Hamada H, Hirata T, Nakajima N (2003) Biotransformation using plant cultured cells. J Mol Catal B Enzym 23(2-6):145–170

    Article  CAS  Google Scholar 

  • Ishimaru K, Yamanaka M, Terahara N, Shimomura K, Okamoto D, Yoshihira K (1996) Biotransformation of phenolics by hairy root cultures of five herbal plants. Jpn J Food Chem 3:38–42

    CAS  Google Scholar 

  • Kanho H, Yaoya S, Kawahara N, Nakane T, Takase Y, Masuda K, Kuroyanagi M (2005) Biotransformation of benzaldehyde-type and acetophenone-type derivatives by Pharbitis nil hairy roots. Chem Pharm Bull 53(4):361–365

    Article  CAS  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3(13):1222–1239

    Google Scholar 

  • Kawaguchi K, Hirotani M, Yoshikawa T, Furuya T (1990) Biotransformation of digitoxigenin by ginseng hairy root cultures. Phytochemistry 29(3):837–843

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi M, Arima T, Shirota O, Sekita S, Nakane T, Takase Y, Kuroyanagi M (2010) Production of sesquiterpene-type phytoalexins by hairy roots of Hyoscyamus albus co-treated with cupper sulfate and methyl jasmonate. Chem Pharm Bull 58(7):934–938

    Article  CAS  Google Scholar 

  • Knorr D, Miazga S, Teutonico R (1985) Immobilization and permeabilization of cultured plant cells. Food Technol 39:135–142

    Google Scholar 

  • Lauritzen JR III (1998) Catharanthus roseus as a model system for the study of the phytoremediation of TNT. Master’s Thesis, Metadata Rice University, Houston, TX. http://hdl.handle.net/1911/17191

  • Lee CW, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2002) Biotransformation of umbelliferone by Panax ginseng root cultures. Tetrahedron Lett 43(32):5633–5635

    Article  CAS  Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2003) Biotransformation of low-molecular-weight alcohols by Coleus forskohlii hairy root cultures. Carbohydr Res 338(8):729–731

    Article  CAS  PubMed  Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Biotransformation of paeonol by Panaxginseng root and cell cultures. J Mol Catal B Enzym 35(4):117–121

    Article  CAS  Google Scholar 

  • Lin HW, Kwok KH, Doran PM (2003) Production of podophyllotoxin using cross-species coculture of Linum flavum hairy roots and Podophyllum hexandrum cell suspensions. Biotechnol Prog 19(5):1417–1426. https://doi.org/10.1021/bp034036h

    Article  CAS  PubMed  Google Scholar 

  • Liu J-H, Yu B-Y (2010) Biotransformation of bioactive natural products for pharmaceutical lead compounds. Curr Org Chem 14(14):1400–1406. https://doi.org/10.2174/138527210791616786

    Article  CAS  Google Scholar 

  • Liu Y, Cheng KD, Zhu P, Feng WH, Meng C, Zhu HX, He HX, Ma XJ (2004) Biotransformation of dehydroepiandrosterone by hairy root cultures of Anisodus tanguticus. Yao xue xue bao = Acta pharmaceutica Sinica 39(6):445–448

    CAS  PubMed  Google Scholar 

  • Lixin L, Yanfang S, Xiaofeng L, Dean G (2002) Biotransformation of artemisinin by hairy root cultures of Rheum palmatum L. J Chin Pharm Sci 11(4):122–124

    Google Scholar 

  • Łuczkiewicz M, Kokotkiewicz A (2005a) Co-cultures of shoots and hairy roots of Genista tinctoria L. for synthesis and biotransformation of large amounts of phytoestrogens. Plant Sci 169(5):862–871

    Article  CAS  Google Scholar 

  • Łuczkiewicz M, Kokotkiewicz A (2005b) Genista tinctoria hairy root cultures for selective production of isoliquiritigenin. Zeitschrift für Naturforschung C 60(11–12):867–875

    Article  Google Scholar 

  • Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015) Hairy root biotechnology—indicative timeline to understand missing links and future outlook. Protoplasma 252(5):1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Majumder A, Jha S (2012) Hairy roots: a promising tool for phytoremediation. In: Microorganisms in environmental management. Springer, Dordrecht, pp 607–629. https://doi.org/10.1007/978-94-007-2229-3_27

    Google Scholar 

  • Maramoroch K (1997) Book Review. Environ Entomol 26(3):726–726. https://doi.org/10.1093/ee/26.3.726

    Article  Google Scholar 

  • Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci 19(1):29–35. https://doi.org/10.1016/j.tplants.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • Moon SH, Venkatesh J, Yu JW, Park SW (2015) Differential induction of meristematic stem cells of Catharanthus roseus and their characterization. C R Biol 338(11):745–756. https://doi.org/10.1016/j.crvi.2015.05.005

    Article  PubMed  Google Scholar 

  • Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • Moyano E, Palazón J, Bonfill M, Osuna L, Cusidó RM, Oksman-Caldentey K-M, Piñol MT (2007) Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures. J Plant Physiol 164(4):521–524

    Article  CAS  PubMed  Google Scholar 

  • Nadia M, Marzia I, FrancoF V, Nicoletta C-P, Anacleto M (2005) Cell cultures of Ajuga reptans L. to bioconvert emodin and aloe–emodin: an HPLC/ESI/MS investigation. Enzym Microb Technol 36(4):399–408

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335. https://doi.org/10.1021/np200906s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes IS, Faria JM, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots. Planta Med 75(04):387–391. https://doi.org/10.1055/s-0028-1112217

    Article  CAS  PubMed  Google Scholar 

  • Oller AL, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 69(6):1102–1111

    Google Scholar 

  • Orden AA, Bisogno FR, Cifuente DA, Giordano OS, Kurina Sanz M (2006) Asymmetric bioreduction of natural xenobiotic diketones by Brassica napus hairy roots. J Mol Catal B Enzym 42(3):71–77. https://doi.org/10.1016/j.molcatb.2006.06.010

    Article  CAS  Google Scholar 

  • Orden AA, Magallanes-Noguera C, Agostini E, Kurina-Sanz M (2009) Anti-Prelog reduction of ketones by hairy root cultures. J Mol Catal B Enzym 61(3):216–220

    Article  CAS  Google Scholar 

  • Pandey P, Kaur R, Singh S, Chattopadhyay SK, Srivastava SK, Banerjee S (2014) Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism. Biotechnol Lett 36(7):1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Singh S, Tewari N, Srinivas K, Shukla A, Gupta N, Vasudev PG, Khan F, Pal A, Bhakuni RS (2015) Hairy root mediated functional derivatization of artemisinin and their bioactivity analysis. J Mol Catal B Enzym 113:95–103

    Article  CAS  Google Scholar 

  • Patel S (2016) Plant-derived cardiac glycosides: role in heart ailments and cancer management. Biomed Pharmacother 84:1036–1041. https://doi.org/10.1016/j.biopha.2016.10.030

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Gong J, Zhang X, Zhang M, Zheng S (2008) Production of gastrodin through biotransformation of p-hydroxybenzyl alcohol using hairy root cultures of Datura tatula L. Afr J Biotechnol 7(3):211–216

    CAS  Google Scholar 

  • Pitta–Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzym Microb Technol 26(2):252–258

    Article  Google Scholar 

  • Prakash G, Srivastava AK (2011) Integrated yield and productivity enhancement strategy for biotechnological production of azadirachtin by suspension culture of Azadirachta indica. Asia Pac J Chem Eng 6(1):129–137

    Article  CAS  Google Scholar 

  • Pras N, Woerdenbag HJ, van Uden W (1995) Bioconversion potential of plant enzymes for the production of pharmaceuticals. Plant Cell Tissue Organ Cult 43(2):117–121. https://doi.org/10.1007/bf00052165

  • Qian ZG, Zhao ZJ, Xu Y, Qian X, Zhong JJ (2005) Highly efficient strategy for enhancing taxoid production by repeated elicitation with a newly synthesized jasmonate in fed-bath cultivation of Taxus chinensis cells. Biotechnol Bioeng 90:516–521

    Article  CAS  PubMed  Google Scholar 

  • Santamaria AR, Mulinacci N, Valletta A, Innocenti M, Pasqua G (2011) Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J Agric Food Chem 59(17):9094–9101

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Felder S, Höver T, Kehraus S, Neu E, Lohr F, König GM, Schäberle TF (2013) Antibiotics from gliding bacteria. Phytochem Rev 12(3):507–516. https://doi.org/10.1007/s11101-012-9224-x

    Article  CAS  Google Scholar 

  • Shimoda K, S-y Y, Hirakawa H, Ohta S, Hirata T (2002) Biotransformation of phenolic compounds by the cultured cells of Catharanthus roseus. J Mol Catal B Enzym 16(5):275–281

    Article  CAS  Google Scholar 

  • Shimoda K, Kwon S, Utsuki A, Ohiwa S, Katsuragi H, Yonemoto N, Hamada H, Hamada H (2007) Glycosylation of capsaicin and 8-nordihydrocapsaicin by cultured cells of Catharanthus roseus. Phytochemistry 68(10):1391–1396. https://doi.org/10.1016/j.phytochem.2007.03.005

    Article  CAS  PubMed  Google Scholar 

  • Sidwa-Gorycka M, Królicka A, Kozyra M, Głowniak K, Bourgaud F, Łojkowska E (2003) Establishment of a co-culture of Ammi majus L. and Ruta graveolens L. for the synthesis of furanocoumarins. Plant Sci 165(6):1315–1319

    Article  CAS  Google Scholar 

  • Singh P, Khan S, Pandey SS, Singh M, Banerjee S, Kitamura Y, ur Rahman L (2015) Vanillin production in metabolically engineered Beta vulgaris hairy roots through heterologous expression of Pseudomonas fluorescens HCHL gene. Ind Crop Prod 74:839–848

    Article  CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228. https://doi.org/10.1007/10_2008_103

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Kaur R, Chattopadhyay SK, Banerjee S (2013) Production of industrially important cosmaceutical and pharmaceutical derivatives of betuligenol by Atropa belladonna hairy root mediated biotransformation. Ind Crop Prod 44:171–175. https://doi.org/10.1016/j.indcrop.2012.11.016

    Article  CAS  Google Scholar 

  • Srivastava V, Mehrotra S, Mishra S (2016) Biotransformation through hairy roots: perspectives, outcomes, and major challenges. In: Jha S (ed) Transgenesis and secondary metabolism. Springer International Publishing, Cham, pp 1–24. https://doi.org/10.1007/978-3-319-27490-4_10-1

    Chapter  Google Scholar 

  • Subroto MA, Kwok KH, Hamill JD, Doran PM (1996) Coculture of genetically transformed roots and shoots for synthesis, translocation, and biotransformation of secondary metabolites. Biotechnol Bioeng 49(5):481–494

    Article  CAS  PubMed  Google Scholar 

  • Suga T, Hirata T (1990) Biotransformation of exogenous substrates by plant cell cultures. Phytochemistry 29(8):2393–2406

    Article  CAS  Google Scholar 

  • Suga T, Aoki T, Hirata T, Lee YS, Nishimura O, Utsumi M (1980) Biotransformation of foreign substrates with callus tissues. Transformation of terpineols with tobacco suspension cells. Chem Lett 9(3):229–230

    Article  Google Scholar 

  • Suga T, Hirata T, Hamada H, Murakami S (1988) Biotransformation of 3-oxo-p-menthane derivatives by cultured cells of Nicotiana tabacum. Phytochemistry 27(4):1041–1044. https://doi.org/10.1016/0031-9422(88)80269-3

    Article  CAS  Google Scholar 

  • Talano MA, Frontera S, González P, Medina MI, Agostini E (2010) Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mater 176(1–3):784–791. https://doi.org/10.1016/j.jhazmat.2009.11.103

    Article  CAS  PubMed  Google Scholar 

  • Ushiyama M, Furuya T (1989) Glycosylation of phenolic compounds by root culture of Panax ginseng. Phytochemistry 28(11):3009–3013

    Article  CAS  Google Scholar 

  • Ushiyama M, Asada Y, Yoshikawa T, Furuya T (1989) Biotransformation of aromatic carboxylic acids by root culture of Panax ginseng. Phytochemistry 28(7):1859–1869

    Article  CAS  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol – Plant 43(5):383–403. https://doi.org/10.1007/s11627-007-9096-8

    Article  CAS  Google Scholar 

  • Wang W, Zhang Z-Y, Zhong J-J (2005) Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl Microbiol Biotechnol 67(6):752–758

    Article  CAS  PubMed  Google Scholar 

  • Wayment D, Bhadra R, Lauritzen J, Hughes J, Shanks J (1999) A transient study of formation of conjugates during TNT metabolism by plant tissues. Int J Phytoremediation 1(3):227–239

    Article  CAS  Google Scholar 

  • White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141(3):1134–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wielanek M, Urbanek H (2006) Enhanced glucotropaeolin production in hairy root cultures of Tropaeolum majus L. by combining elicitation and precursor feeding. Plant Cell Tissue Organ Cult 86(2):177–186. https://doi.org/10.1007/s11240-006-9106-2

    Article  CAS  Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes in transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet MGG 186(1):16–22. https://doi.org/10.1007/bf00422906

    Article  CAS  Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules. Plant Biotechnol J 10(3):249–268. https://doi.org/10.1111/j.1467-7652.2011.00664.x

    Article  CAS  PubMed  Google Scholar 

  • Woodley JM, Bisschops M, Straathof AJ, Ottens M (2008) Future directions for in-situ product removal (ISPR). J Chem Technol Biotechnol 83(2):121–123

    Article  CAS  Google Scholar 

  • Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19(2):145–152. https://doi.org/10.1016/j.copbio.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  • Wu J-Y, Ng J, Shi M, Wu S-J (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root–bacteria coculture process. Appl Microbiol Biotechnol 77(3):543–550

    Article  CAS  PubMed  Google Scholar 

  • Xu JF, Su ZG, Feng PS (1998) Activity of tyrosol glucosyltransferase and improved salidroside production through biotransformation of tyrosol in Rhodiola sachalinensis cell cultures. J Biotechnol 61(1):69–73. https://doi.org/10.1016/S0168-1656(98)00011-X

    Article  CAS  Google Scholar 

  • Yamanaka M, Shimomura K, Sasaki K, Yoshihira K, Ishimaru K (1995) Glucosylation of phenolics by hairy root cultures of Lobelia sessilifolia. Phytochemistry 40(4):1149–1150. https://doi.org/10.1016/0031-9422(95)00456-H

    Article  CAS  Google Scholar 

  • Yan C, Ma W, Yan W, Yu R (2008) Biotransformation of furannoligularenone by hairy root cultures of Polygonum multiflorum. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials 31(5):633–635

    CAS  PubMed  Google Scholar 

  • Ye M, Dai J, Guo H, Cui Y, Guo D (2002) Glucosylation of cinobufagin by cultured suspension cells of Catharanthus roseus. Tetrahedron Lett 43(47):8535–8538. https://doi.org/10.1016/S0040-4039(02)02078-6

    Article  CAS  Google Scholar 

  • Yoon JM, Aken BV, Schnoor JL (2006) Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar. Int J Phytoremediation 8(1):81–94

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Asada Y, Furuya T (1993) Continuous production of glycosides by a bioreactor using ginseng hairy root culture. Appl Microbiol Biotechnol 39(4):460–464

    Article  CAS  Google Scholar 

  • Zhao L, Sander GW, Shanks JV (2013) Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Adv Biochem Eng Biotechnol 134:23–54. https://doi.org/10.1007/10_2013_182

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Yang YB, Yang CR (1979) Chemical study on gastrodin and related compounds, separation and identification of chemical constitutes of Gastrodia elata Bl. Acta Chim Sin 37:183–189

    CAS  Google Scholar 

  • Zhou L, Ruan D, He Z, Zhu H, Yang C, Wang J (1998) Biotransformation of artemisinin by hairy roots of Cyanotis arachnoidea. Acta Bot Yunnanica 20(2):229–232

    CAS  Google Scholar 

  • Zobayed S, Murch S, Rupasinghe H, De Boer J, Glickman B, Saxena P (2004) Optimized system for biomass production, chemical characterization and evaluation of chemo-preventive properties of Scutellaria baicalensis Georgi. Plant Sci 167(3):439–446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge EMBRAPA, CNPq, CAPES, and FAP-DF for funding and support, and they report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fatima Grossi-de-Sa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habibi, P., Soccol, C.R., Grossi-de-Sa, M.F. (2018). Hairy Root-Mediated Biotransformation: Recent Advances and Exciting Prospects. In: Srivastava, V., Mehrotra, S., Mishra, S. (eds) Hairy Roots. Springer, Singapore. https://doi.org/10.1007/978-981-13-2562-5_8

Download citation

Publish with us

Policies and ethics