Skip to main content

Biodiesel, Bioethanol, and Biobutanol Production from Microalgae

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Due to depletion of fossil fuel supplies and hazardous impacts on the global climate, clean renewable and sustainable energy production is being critically demanded. First-generation biofuels are mainly produced from edible crops and oilseeds. Because of competition with human food, first-generation biofuels are restricted in their ability to accomplish the global biofuel need, climate change amendment, and economic growth. Consequently, second-generation and third-generation biofuels were developed from nonedible feedstocks including lignocellulosic biomasses and microalgae, respectively, to overcome these challenges. However, algae are considered as a superior feedstock for biofuel production because of their diversity. Some of the major benefits of algae are their extremely fast growth rate and the ability of sequestration of carbon dioxide with high oil and carbohydrate contents that can be easily transformed into biodiesel or other gasoline components such as butanol. Biodiesel has been receiving globally growing consideration due to the liquid fuel needs and its potential as a biodegradable nontoxic substitute to petroleum diesel. In addition, butanol has become an attractive biofuel as a by-product of algal biomass processing after lipid extraction for biodiesel, due to its higher energy content, lower vapor pressure, and less hygroscopy than ethanol. This chapter reviews the current status of microalgae for biodiesel and butanol production as eco-friendly alternatives for liquid fossil fuels.

Authors contributed equally to the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Hashesh M, Wang R, Hallenbeck PC. Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresour Technol. 2011;102:8414–22.

    Article  CAS  PubMed  Google Scholar 

  • Abomohra A, Wagner M, El-Sheekh M, Hanelt D. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol. 2013;25:931–6.

    Article  CAS  Google Scholar 

  • Abomohra A, El-Sheekh M, Hanelt D. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy. 2014;64:237–44.

    Article  CAS  Google Scholar 

  • Abomohra A, Jin W, El-Sheek M. Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus. Energy Convers Manag. 2016a;108:23–9.

    Article  CAS  Google Scholar 

  • Abomohra A, Jin W, Tu R, et al. Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renew Sust Energ Rev. 2016b;64:596–606.

    Article  CAS  Google Scholar 

  • Abomohra A, El-Sheekh M, Hanelt D. Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. Renew Energy. 2017;101:1266–72.

    Article  CAS  Google Scholar 

  • Abomohra A, Eladel H, El-Esawi M, et al. Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresour Technol. 2018;249:992–9.

    Article  CAS  PubMed  Google Scholar 

  • Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res. 2001;40:4681–715.

    Article  CAS  Google Scholar 

  • Alam MA, Wang Z, Yuan Z. Generation and harvesting of microalgae biomass for biofuel production. In: Tripathi B, Kumar D, editors. Prospects and challenges in algal biotechnology. Singapore: Springer; 2017.

    Google Scholar 

  • Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev. 2005;9:363–78.

    Article  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC. Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol. 2009;20:264–71.

    Article  CAS  PubMed  Google Scholar 

  • Bharathiraja B, Chakravarthy M, Kumar RR, et al. Biodiesel production using chemical and biological methods–a review of process, catalyst, acyl acceptor, source and process variables. Renew Sust Energ Rev. 2014;38:368–82.

    Article  CAS  Google Scholar 

  • Bilgin A, Durgun O, Sahin Z. The effects of diesel-ethanol blends on diesel engine performance. Energy Sources. 2002;24:431–40.

    Article  CAS  Google Scholar 

  • Bošnjaković M. Biodiesel from algae. J Mech Eng Autom. 2013;3:179–88.

    Google Scholar 

  • Bozbas K. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sust Energ Rev. 2008;12:542–52.

    Article  CAS  Google Scholar 

  • Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77. https://doi.org/10.1016/j.rser.2009.10.009.

    Article  CAS  Google Scholar 

  • Brown LM. Uptake of carbon dioxide from flue gas by microalgae. Energy Convers Manag. 1996;37:1363–7.

    Article  CAS  Google Scholar 

  • Campos EJ, Qureshi N, Blaschek HP. Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. In: Biotechnology for fuels and chemicals. New York: Springer; 2002. p. 553–61.

    Chapter  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG. Livestock waste-to-bioenergy generation opportunities. Bioresour Technol. 2008;99:7941–53.

    Article  CAS  PubMed  Google Scholar 

  • Cara C, Moya M, Ballesteros I, et al. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem. 2007;42:1003–9.

    Article  CAS  Google Scholar 

  • Castro YA. Optimization of wastewater microalgae pretreatment for acetone, butanol, and ethanol fermentation. Logan: Utah State University; 2014.

    Google Scholar 

  • Cheah WY, Ling TC, Show PL, et al. Cultivation in wastewaters for energy: a microalgae platform. Appl Energy. 2016;179:609–25.

    Article  CAS  Google Scholar 

  • Chen CY, Zhao XQ, Yen HW, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2013;78:1–10. https://doi.org/10.1016/j.bej.2013.03.006.

    Article  CAS  Google Scholar 

  • Chen W-H, Lin B-J, Huang M-Y, Chang J-S. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol. 2015;184:314–27.

    Article  CAS  PubMed  Google Scholar 

  • Cheng H-H, Whang L-M, Chan K-C, et al. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol. 2015;184:379–85.

    Article  CAS  PubMed  Google Scholar 

  • Chia SR, Ong HC, Chew KW, et al. Sustainable approaches for algae utilisation in bioenergy production. Renew Energy. 2017;129:1–15. https://doi.org/10.1016/j.renene.2017.04.001.

    Article  CAS  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–31. https://doi.org/10.1016/j.tibtech.2007.12.002.

    Article  CAS  PubMed  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010;101:5330–6.

    Article  CAS  PubMed  Google Scholar 

  • Costa RL, Oliveira TV, Ferreira J de S, et al. Prospective technology on bioethanol production from photofermentation. Bioresour Technol. 2015;181:330–7. https://doi.org/10.1016/j.biortech.2015.01.090.

    Article  CAS  PubMed  Google Scholar 

  • Danquah M, Liu B, Harun R, Haru R. Analysis of process configurations for bioethanol production from microalgal biomass. In: Progress in biomass and bioenergy production. Rijeka: InTech; 2011.

    Google Scholar 

  • Daroch M, Geng S, Wang G. Recent advances in liquid biofuel production from algal feedstocks. Appl Energy. 2013;102:1371–81.

    Article  Google Scholar 

  • de Farias Silva CE, Bertucco A. Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem. 2016;51:1833–42. https://doi.org/10.1016/j.procbio.2016.02.016.

    Article  CAS  Google Scholar 

  • Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci. 2005;31:466–87.

    Article  CAS  Google Scholar 

  • Demirbas A. Competitive liquid biofuels from biomass. Appl Energy. 2011;88:17–28.

    Article  CAS  Google Scholar 

  • Deng M-D, Coleman JR. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol. 1999;65:523–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewulf J, Van Langenhove H. Renewables-based technology: sustainability assessment. Chichester: Wiley; 2006.

    Book  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, et al. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 2008;19:235–40.

    Article  CAS  PubMed  Google Scholar 

  • Domozych D, Ciancia M, Fangel J, et al. The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. 2012;3:1–10.

    Article  CAS  Google Scholar 

  • Drapcho CM, Nhuan NP, Walker TH. Biofuels engineering process technology. New York: McGraw-Hill; 2008.

    Google Scholar 

  • Dürre P. Biobutanol: an attractive biofuel. Biotechnol J. 2007;2:1525–34. https://doi.org/10.1002/biot.200700168.

    Article  CAS  PubMed  Google Scholar 

  • Eggeman T, Elander RT. Process and economic analysis of pretreatment technologies. Bioresour Technol. 2005;96:2019–25. https://doi.org/10.1016/j.biortech.2005.01.017.

    Article  CAS  PubMed  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD. Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol. 2012;111:491–5. https://doi.org/10.1016/j.biortech.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  • FAPC-150BC. Biodiesel Production Techniques. Food Technology Fact Sheet, Robert M. Kerr Food & Agricultural Products Center, Oklahoma Cooperative Extension Service, Oklahoma State University.

    Google Scholar 

  • Ferreira AF, Ortigueira J, Alves L, et al. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios. Bioresour Technol. 2013;144:156–64.

    Article  CAS  PubMed  Google Scholar 

  • Foley PM, Beach ES, Zimmerman JB. Algae as a source of renewable chemicals: opportunities and challenges. Green Chem. 2011;13:1399–405.

    Article  CAS  Google Scholar 

  • Frank ED, Elgowainy A, Han J, Wang Z. Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Chang. 2013;18:137–58.

    Article  Google Scholar 

  • Gao K. ABE fermentation from low cost substrates. Fermentation. 2016;2:13.

    Article  CAS  Google Scholar 

  • Gao K, Rehmann L. ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy. 2014;66:110–5.

    Article  CAS  Google Scholar 

  • Gao K, Boiano S, Marzocchella A, Rehmann L. Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresour Technol. 2014;174:176–81.

    Article  CAS  PubMed  Google Scholar 

  • George HA, Chen J-S. Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum). Appl Environ Microbiol. 1983;46:321–7.

    Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP. Metabolic pathways of clostridia for producing butanol. Biotechnol Adv. 2009;27:764–81. https://doi.org/10.1016/j.biotechadv.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert R, Perl A, Banister D. Transport revolutions: moving people and freight without oil. Hoboken: Earthscan; 2007.

    Google Scholar 

  • Gloria M, Colmenares M, Catholic P. Biofuels Potential of Peru. The University of Queensland, Australia; 2013; 211pp.

    Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ. Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol. 2008;178:473–85.

    Article  CAS  PubMed  Google Scholar 

  • Gottwald M, Hippe H, Gottschalk G. Formation of n-butanol from D-glucose by strains of the “Clostridium tetanomorphum” group. Appl Environ Microbiol. 1984;48:573–6.

    Google Scholar 

  • Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol. 2009;36:269–74.

    Article  CAS  PubMed  Google Scholar 

  • Green EM. Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol. 2011;22:337–43. https://doi.org/10.1016/j.copbio.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  • Groot WJ, Van der Lans R, Luyben KCAM. Technologies for butanol recovery integrated with fermentations. Process Biochem. 1992;27:61–75.

    Article  CAS  Google Scholar 

  • Gupta RB, Demirbas A. Gasoline, diesel, and ethanol biofuels from grasses and plants. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour Technol. 2011;102:178–85.

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30:709–32.

    Article  CAS  PubMed  Google Scholar 

  • Han S, Jin W, Chen Y, Tu R, Abomohra A. enhancement of lipid production of Chlorella pyrenoidosa cultivated in municipal wastewater by magnetic treatment. Appl Biochem Biotechnol. 2016;180:1043–55.

    Article  CAS  PubMed  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy. 2011;88:3464–7. https://doi.org/10.1016/j.apenergy.2010.10.048.

    Article  CAS  Google Scholar 

  • Harun R, Yip JWS, Thiruvenkadam S, et al. Algal biomass conversion to bioethanol–a step-by-step assessment. Biotechnol J. 2014;9:73–86.

    Article  CAS  PubMed  Google Scholar 

  • Hellingwerf KJ, De Mattos MJT. Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the “photanol” approach. J Biotechnol. 2009;142:87–90.

    Article  CAS  PubMed  Google Scholar 

  • Hemming D. Plant sciences reviews 2011. Wallingford: Cabi; 2011.

    Google Scholar 

  • Hemschemeier A, Happe T. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Transactions. 2005;33:39–41.

    Article  CAS  PubMed  Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González MC. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J. 2015;262:939–45. https://doi.org/10.1016/j.cej.2014.10.049.

    Article  CAS  Google Scholar 

  • Hernando J, Leton P, Matia MP, et al. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel. 2007;86:1641–4.

    Article  CAS  Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, et al. Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today. 1998;45:399–404.

    Article  CAS  Google Scholar 

  • Ho S-HH, Huang S-WW, Chen C-YY, et al. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191–8. https://doi.org/10.1016/j.biortech.2012.10.015.

    Article  CAS  PubMed  Google Scholar 

  • Hönig V, Kotek M, Mařík J. Use of butanol as a fuel for internal combustion engines. Agron Res. 2014;12:333–40.

    Google Scholar 

  • Hu Y, Wang S, Li J, Wang Q, He Z, Feng Y, Abomohra A, Afonaa-Mensah S, Hui C. Co-pyrolysis and co-hydrothermal liquefaction of seaweeds and rice husk: comparative study towards enhanced biofuel production. J Anal Appl Pyrolysis. 2017;129:162–70.

    Article  CAS  Google Scholar 

  • Huang Y, Chen Y, Xie J, et al. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel. 2016;183:9–19. https://doi.org/10.1016/j.fuel.2016.06.013.

    Article  CAS  Google Scholar 

  • Ji J, Wang J, Li Y, et al. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics. 2006;44:e411–4.

    Article  PubMed  Google Scholar 

  • Jin C, Yao M, Liu H, et al. Progress in the production and application of n-butanol as a biofuel. Renew Sust Energ Rev. 2011;15:4080–106.

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel. 2009;23:5179–83.

    Article  CAS  Google Scholar 

  • Jones DT, Woods D. Acetone-butanol fermentation revisited. Microbiol Rev. 1986;50:484–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo HH, Sharratt PN, Das P, et al. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol. 2011;102:5800–7.

    Article  CAS  PubMed  Google Scholar 

  • Klass DL. Biomass for renewable energy, fuels, and chemicals. Philadelphia: Elsevier; 1998.

    Google Scholar 

  • Kumar S. Evaluation of biodiesel as an alternate fuel to compression\nIgnition engine and to study its effect on performance and\nEmission characteristics. Int J Mod Eng Res. 2014;4:194–200.

    Google Scholar 

  • Kumar D, Murthy GS. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol Biofuels. 2013;6:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laghari SM, Isa MH, Saleem H. Microwave individual and combined pre-treatments on lignocellulosic biomasses. IOSR J Eng. 2014;4:14–28.

    Article  Google Scholar 

  • Laherrere J. Oil and gas: what future? World. 2006;1:534.

    Google Scholar 

  • Lakaniemi A-M, Tuovinen OH, Puhakka JA. Anaerobic conversion of microalgal biomass to sustainable energy carriers–a review. Bioresour Technol. 2013;135:222–31.

    Article  CAS  PubMed  Google Scholar 

  • Laza T, Bereczky Á. Basic fuel properties of rapeseed oil-higher alcohols blends. Fuel. 2011;90:803–10.

    Article  CAS  Google Scholar 

  • Li S-Y, Srivastava R, Suib SL, et al. Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresour Technol. 2011;102:4241–50.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006;69:627–42.

    Article  CAS  PubMed  Google Scholar 

  • Lü J, Sheahan C, Fu P. Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci. 2011;4:2451–66.

    Article  CAS  Google Scholar 

  • Macquarrie DJ, Clark JH, Fitzpatrick E. The microwave pyrolysis of biomass. Biofuels Bioprod Biorefin. 2012;6:549–60.

    Article  CAS  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew Sust Energ Rev. 2007;11:1300–11.

    Article  CAS  Google Scholar 

  • Mathur ML, Sharma RP. Internal combustion engines. New Delhi: Dhanpat Rai Publications; 2010.

    Google Scholar 

  • Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energ Rev. 2006;10:248–68.

    Article  CAS  Google Scholar 

  • Millat T, Janssen H, Thorn GJ, et al. A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl Microbiol Biotechnol. 2013;97:6451–66.

    Article  CAS  PubMed  Google Scholar 

  • Miranda I, Gominho J, Pereira H. Incorporation of bark and tops in Eucalyptus globulus wood pulping. Bioresources. 2012;7:4350–61.

    Google Scholar 

  • Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta (BBA)-Bioenergetics. 2011;1807:1507–38.

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.

    Article  CAS  PubMed  Google Scholar 

  • Mubarak M, Shaija A, Suchithra TV. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015;7:117–23. https://doi.org/10.1016/j.algal.2014.10.008.

    Article  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PMR, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010;28:817–30.

    Article  CAS  PubMed  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH. Microalgal production—a close look at the economics. Biotechnol Adv. 2011;29:24–7.

    Article  CAS  PubMed  Google Scholar 

  • Nüchter M, Ondruschka B, Jungnickel A, Müller U. Organic processes initiated by non-classical energy sources. J Phys Org Chem. 2000;13:579–86.

    Article  Google Scholar 

  • O’Reilly J, Oreskes N, Oppenheimer M. The rapid disintegration of projections: the west Antarctic ice sheet and the intergovernmental panel on climate change. Soc Stud Sci. 2012;42:709–31.

    Article  PubMed  Google Scholar 

  • Okuda K, Oka K, Onda A, et al. Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol. 2008;83:836–41.

    Article  CAS  Google Scholar 

  • Olabi AG. The 3rd international conference on sustainable energy and environmental protection SEEP 2009–guest editor’s introduction. Energy. 2010;35:4508–9.

    Article  Google Scholar 

  • Olabi AG. State of the art on renewable and sustainable energy. Energy. 2013;61:2–5.

    Article  Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G. A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ono E, Cuello JL. Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosyst Eng. 2006;95:597–606.

    Article  Google Scholar 

  • Ormerod WG, Freund P, Smith A, Davison J. Ocean storage of CO2: IEA Greenhouse Gas R&D Programme; 2002.

    Google Scholar 

  • Park J-H, Hong J-Y, Jang HC, et al. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol. 2012;108:83–8.

    Article  CAS  PubMed  Google Scholar 

  • Patil V, Tran K-Q, Giselrød HR. Towards sustainable production of biofuels from microalgae. Int J Mol Sci. 2008;9:1188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfromm PH, Amanor-Boadu V, Nelson R, et al. Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy. 2010;34:515–24.

    Article  CAS  Google Scholar 

  • Pospíšil M, Šiška J, Šebor G. BioButanol as fuel in transport, Biom [online].[cit. 2014-17-01]. Available www.biom.cz. 2014.

  • Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57:287–93.

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Scheibenbogen K. Photobioreactors: design and performance with respect to light energy input. In: Bioprocess and algae reactor technology, apoptosis. Berlin: Springer; 1998. p. 123–52.

    Chapter  Google Scholar 

  • Qin J. Bio – hydrocarbons from Algae. Barton Aust Rural Ind Res Dev Corp. 2005;05/025:1–26. doi: ISBN 1 74151 124 0

    Google Scholar 

  • Qureshi N, Li X, Hughes S, et al. Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog. 2006;22:673–80.

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell. 2010;9:486–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid N, Rehman MSU, Sadiq M, et al. Current status, issues and developments in microalgae derived biodiesel production. Renew Sust Energ Rev. 2014;40:760–78.

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics. 2011;12:148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–12. https://doi.org/10.1002/bit.22033.

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana KG, Mariano AB, Vargas JVC. A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res. 2011;35:291–311.

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 2008;1:20–43.

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science (80-). 2008;319:1238–40.

    Article  CAS  Google Scholar 

  • Shaheen R, Shirley M, Jones DT. Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia. J Mol Microbiol Biotechnol. 2000;2:115–24.

    CAS  PubMed  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P. Look back at the US department of energy’s aquatic species program: biodiesel from algae; close-out report. Golden: National Renewable Energy Lab; 1998.

    Book  Google Scholar 

  • Singh A, Olsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88:3548–55.

    Article  CAS  Google Scholar 

  • Singh A, Smyth BM, Murphy JD. A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew Sust Energ Rev. 2010;14:277–88.

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol. 2011;102:10–6.

    Article  CAS  PubMed  Google Scholar 

  • Skřivanová E, Marounek M. Influence of pH on antimicrobial activity of organic acids against rabbit enteropathogenic strain of Escherichia coli. Folia Microbiol (Praha). 2007;52:70–2.

    Article  Google Scholar 

  • Soni R, Nazir A, Chadha BS. Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind Crop Prod. 2010;31:277–83.

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.

    Article  CAS  PubMed  Google Scholar 

  • Srirangan K, Akawi L, Moo-Young M, Chou CP. Towards sustainable production of clean energy carriers from biomass resources. Appl Energy. 2012;100:172–86.

    Article  Google Scholar 

  • Stavarache C, Vinatoru M, Maeda Y. Ultrasonic versus silent methylation of vegetable oils. Ultrason Sonochem. 2006;13:401–7.

    Article  CAS  PubMed  Google Scholar 

  • Stephenson AL, Dennis JS, Howe CJ, et al. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels. 2010;1:47–58.

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol. 2010;101:4744–53.

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Aden A, Elander RT, et al. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol. 2011;102:11105–14.

    Article  CAS  PubMed  Google Scholar 

  • Tengborg C, Galbe M, Zacchi G. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzym Microb Technol. 2001;28:835–44.

    Article  CAS  Google Scholar 

  • Thang VH, Kanda K, Kobayashi G. Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol. 2010;161:157–70.

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng. 1998;86:38–43.

    Article  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99:4021–8.

    Article  CAS  PubMed  Google Scholar 

  • Ullah K, Ahmad M, Sharma VK, et al. Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel. 2015;143:414–23.

    Article  CAS  Google Scholar 

  • Van Der Maarel MJEC, Van Der Veen B, Uitdehaag JCM, et al. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94:137–55.

    Article  PubMed  Google Scholar 

  • Wang X, Liu X, Wang G. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol. 2011;53:246–52.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Janssen H, Blaschek HP. Fermentative biobutanol production: an old topic with remarkable recent advances. In: Bioprocessing of renewable resources to commodity bioproducts. Hoboken: Wiley; 2014. p. 227–60.

    Chapter  Google Scholar 

  • Wang Y, Guo W, Cheng C, et al. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour Technol. 2016;200:557–64. https://doi.org/10.1016/j.biortech.2015.10.056.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Jiang D, Cao B, Hu Y, Yuan C, Wang Q, He Z, Hui C, Abomohra A, Liu X, Feng Y, Zhang B. Study on the interaction effect of seaweed bio-coke and rice husk volatiles during co-pyrolysis. J Anal Appl Pyrolysis. 2018;132:111–22. https://doi.org/10.1016/j.jaap.2018.03.009.

    Article  CAS  Google Scholar 

  • Warabi Y, Kusdiana D, Saka S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour Technol. 2004;91:283–7.

    Article  CAS  PubMed  Google Scholar 

  • Xiong J-Q, Kurade MB, Jeon B-H. Can microalgae remove pharmaceutical contaminants from water? J Hazard Mater. 2017;323:212–9.

    Article  CAS  PubMed  Google Scholar 

  • Xiros C, Topakas E, Christakopoulos P. Hydrolysis and fermentation for cellulosic ethanol production. Wiley Interdiscip Rev Energy Environ. 2013;2:633–54.

    Article  CAS  Google Scholar 

  • Xue C, Zhao XQ, Liu CG, et al. Prospective and development of butanol as an advanced biofuel. Biotechnol Adv. 2013;31:1575–84. https://doi.org/10.1016/j.biotechadv.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Tashiro Y, Sonomoto K. Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum. J Biosci Bioeng. 2012;114:526–30.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen S, Yang R, Yan Y. Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel. 2010;89:2939–44. https://doi.org/10.1016/j.fuel.2010.05.009.

    Article  CAS  Google Scholar 

  • Zhao G, Chen X, Wang L, et al. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol. 2013;128:337–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-Fatah Abomohra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abomohra, A.EF., Elshobary, M. (2019). Biodiesel, Bioethanol, and Biobutanol Production from Microalgae. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_13

Download citation

Publish with us

Policies and ethics