Skip to main content

Aging of the Bone

  • Chapter
  • First Online:
Aging and Aging-Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1086))

Abstract

Besides mechanical and protective function, bone serves as a keeper for marrow cells and an organ for regulation of calcium ion homeostasis. During aging, significant amounts of the bone are lost due to the loss of this delicate balance toward increased bone resorption coupled with decreased formation, which leads to net bone loss of the aging people. Osteoblasts, osteoclasts, and osteocytes are defined by their respective functions of bone formation and bone resorption. So, during bone aging, how the bone and bone cells will change are key issues for understanding osteoporosis. In this chapter, we focus on the changes of these factors during aging of the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archer CW, Dowthwaite GP, Francis-West P (2003) Development of synovial joints. Birth Defects Res C Embryo Today 69(2):144–155

    Article  CAS  Google Scholar 

  • Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238

    Article  CAS  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278–294

    Article  CAS  Google Scholar 

  • Chen K, Yang YH et al (2014) Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochem Cell Biol 142(3):285–295

    Article  CAS  Google Scholar 

  • Chen H, Senda T, Kubo KY (2015) The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 48:61–68

    Article  CAS  Google Scholar 

  • Chung PL, Zhou S, Eslami B, Shen L, LeBoff MS, Glowacki J (2014) Effect of age on regulation of human osteoclast differentiation. J Cell Biochem 115(8):1412–1419

    Article  CAS  Google Scholar 

  • Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell and more. Endocr Rev 34(5):658–690

    Article  CAS  Google Scholar 

  • de Waure C, Specchia ML, Cadeddu C, Capizzi S, Capri S, Di Pietro ML et al (2014) The prevention of postmenopausal osteoporotic fractures: results of the health technology assessment of a new antiosteoporotic drug. Biomed Res Int:975–927

    Google Scholar 

  • Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts (2001) J Bone Miner Res 16(11):2017–2026

    Article  Google Scholar 

  • Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079

    Article  CAS  Google Scholar 

  • Gambacciani M, Levancini M (2014) Management of postmenopausal osteoporosis and the prevention of fractures. Panminerva Med 56(2):115–131

    CAS  PubMed  Google Scholar 

  • Gambacciani M, Vacca F (2004) Postmenopausal osteoporosis and hormone replacement therapy. Minerva Med 95(6):507–520

    CAS  PubMed  Google Scholar 

  • Gambacciani M et al (2013) Selective estrogen modulators in menopause. Minerva Ginecol 65(6):621–630

    CAS  PubMed  Google Scholar 

  • Giangregorio LM, Papaioannou A, Macintyre NJ, Ashe MC, Heinonen A, Shipp K et al (2014) Too fit to fracture: exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos Int : J Established Result Cooperation Eur Found Osteoporos Natl Osteoporos Found USA 25(3):821–835

    Article  CAS  Google Scholar 

  • Goldring MB, Marcu KB (2012) Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med 18(2):109

    Article  CAS  Google Scholar 

  • Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Aging osteocytes and mechanotransduction. Curr Osteoporos Rep 15:401

    Article  Google Scholar 

  • Holmbeck K (2005) Collagenase in cranial morphogenesis. Cells Tissues Organs 181(3–4):154–165

    Article  CAS  Google Scholar 

  • Hunter RL, Agnew AM (2016) Intraskeletal variation in human cortical osteocyte lacunar density: implications for bone quality assessment. Bone Rep 5:252–261

    Article  Google Scholar 

  • Jilka RL, O’Brien CA (2016) The role of osteocytes in age-related bone loss. Curr Osteoporos Rep 14:16–25

    Article  Google Scholar 

  • Komori T (2016) Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci 17(12)

    Article  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  Google Scholar 

  • Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK et al (2016) Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep 14(1):82–92

    Article  CAS  Google Scholar 

  • Manolagas, Parfitt (2010) What old means to bone. Trends Endocrinol Metab 21(6):369–374

    Article  CAS  Google Scholar 

  • Nakashima T, Takayanagi H (2011) New regulation mechanisms of osteoclast differentiation. Ann N Y Acad Sci 1240:E13–E18

    Article  CAS  Google Scholar 

  • Onal M et al (2013) Suppression of autophagy in osteocytes mimics skeletal aging. J Biol Chem 288:17432–17440

    Article  CAS  Google Scholar 

  • Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S et al (2013) Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J Cell Biochem 114(8):1901–1907

    Article  CAS  Google Scholar 

  • Papapoulos S, Lippuner K, Roux C, Lin CJ, Kendler DL, Lewiecki EM et al (2015) The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM extension study. Osteoporos Int : J Established Result Cooperation Eur Found Osteoporos Natl Osteoporos Found USA 26(12):2773–2783

    Article  CAS  Google Scholar 

  • Plotkin LI, Weinstein RS, Parfitt AM et al (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Investig 104(10):1363–1374

    Article  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    Article  CAS  Google Scholar 

  • Sanders S, Geraci SA (2013) Osteoporosis in postmenopausal women: considerations in prevention and treatment: (women’s health series). South Med J 106(12):698–706

    Article  CAS  Google Scholar 

  • Sharma R, Callaway D, Vanegas D et al (2014) Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts. PLoS One 9(4):e93696

    Article  Google Scholar 

  • Speziali A, Delcogliano M, Tei M et al (2015) Chondropenia: current concept review. Musculoskelet Surg 99(3):189–200

    Article  CAS  Google Scholar 

  • Stanislaus D, Yang X, Liang JD et al (2000) In vivo regulation of apoptosis in metaphyseal trabecular bone of young rats by synthetic human parathyroid hormone (1–34) fragment. Bone 27(2):209

    Article  CAS  Google Scholar 

  • Stenderup K et al (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow strom. Bone 33:919–926

    Article  Google Scholar 

  • Ubaidus S, Li M, Sultana S, de Freitas PH, Oda K, Maeda T, Takagi R, Amizuka N (2009) FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. J Electron Microsc 58(6):381–392

    Article  CAS  Google Scholar 

  • Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T et al (2012) Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18(7):1095–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks for the following grants: TJ1504219036, YS; Key Project of Chinese National Programs for Research and Development (2016YFC1102705); NSFC Projects (81300840, 81470715, 81771043,YS). 2017BR009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, Y., Sun, Y. (2018). Aging of the Bone. In: Wang, Z. (eds) Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, vol 1086. Springer, Singapore. https://doi.org/10.1007/978-981-13-1117-8_12

Download citation

Publish with us

Policies and ethics