Skip to main content
Log in

Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Age-related bone loss is a major cause of osteoporosis and osteoporotic fractures in the elderly. However, the underlying molecular mechanism of age-related bone loss is still poorly understood. The aim of this study was to clarify whether autophagy in osteocytes was involved in age-related bone loss. Male Sprague–Dawley (SD) rats in 3, 9, and 24 month old were used to mimic the age-related bone loss in men. Micro-CT evaluation, histomorphometric analysis, and measurement of bone turnover rate verified age-related bone loss in the male SD rats. Immunofluorescent histochemistry, RT-PCR, and Western blot assessment demonstrated that the expression of LC3-II, LC3-II/I, Beclin-1, and Ulk-1 in the osteocytes decreased with age, while SQSTM1/p62 and apoptosis in the osteocytes increased. A significant correlation between the markers of osteocyte autophagy and bone mineral density in the proximal tibia was revealed. However, osteocyte autophagy was not correlated with osteocyte apoptosis in the process of aging. These results suggested that osteocyte autophagy was possibly involved in the age-related bone loss. Decreased activity of osteocyte autophagy independent of apoptosis might contribute to the age-related bone loss in senile osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282(37):27285–27297. doi:10.1074/jbc.M702810200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, Gibson SB (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4(2):195–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnett A, Brewer GJ (2011) Autophagy in aging and Alzheimer’s disease: pathologic or protective? JAD 25(3):385–394. doi:10.3233/jad-2011-101989

    PubMed Central  PubMed  Google Scholar 

  • Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238. doi:10.1002/jbmr.320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62(3):791–801. doi:10.1002/art.27305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan EY, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282(35):25464–25474. doi:10.1074/jbc.M703663200

    CAS  PubMed  Google Scholar 

  • Cheung ZH, Ip NY (2011) Autophagy deregulation in neurodegenerative diseases: recent advances and future perspectives. J Neurochem 118(3):317–325. doi:10.1111/j.1471-4159.2011.07314.x

    CAS  PubMed  Google Scholar 

  • Chew KC, Ang ET, Tai YK, Tsang F, Lo SQ, Ong E, Ong WY, Shen HM, Lim KL, Dawson VL, Dawson TM, Soong TW (2011) Enhanced autophagy from chronic toxicity of iron and mutant A53T alpha-synuclein: implications for neuronal cell death in Parkinson disease. J Biol Chem 286(38):33380–33389. doi:10.1074/jbc.M111.268409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deter RL, Baudhuin P, De Duve C (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35(2):C11–C16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Djavaheri-Mergny M, Maiuri MC, Kroemer G (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29(12):1717–1719. doi:10.1038/onc.2009.519

    CAS  PubMed  Google Scholar 

  • Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1(1):46–52

    CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. doi:10.1038/nature04724

    CAS  PubMed  Google Scholar 

  • Huber TB, Edelstein CL, Hartleben B, Inoki K, Dong Z, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, Ravichandran K, Susztak K, Yoshida S (2012) Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8(7):1009–1031. doi:10.4161/auto.19821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isaka Y, Kimura T, Takabatake Y (2011) The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells. Autophagy 7(9):1085–1087

    CAS  PubMed  Google Scholar 

  • Jia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, Bonewald L, Jiang JX, Lane NE (2011) Glucocorticoid dose determines osteocyte cell fate. FASEB J 25(10):3366–3376. doi:10.1096/fj.11-182519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang SD, Jiang LS, Dai LY (2006) Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos Int 17(10):1552–1561. doi:10.1007/s00198-006-0165-3

    PubMed  Google Scholar 

  • Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J, Lee MS (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8(4):318–324. doi:10.1016/j.cmet.2008.08.013

    CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA Jr, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van der Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434. doi:10.1083/jcb.200412022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. doi:10.1016/j.cell.2007.12.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Investig 115(10):2679–2688. doi:10.1172/jci26390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, Goldstein SA, Krebsbach PH, Guan JL (2013) Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. doi:10.1002/jbmr.1971

    Google Scholar 

  • Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12(9):842–846. doi:10.1038/ncb0910-842

    CAS  PubMed  Google Scholar 

  • Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21(6):369–374. doi:10.1016/j.tem.2010.01.010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maymo JL, Perez Perez A, Duenas JL, Calvo JC, Sanchez-Margalet V, Varone CL (2010) Regulation of placental leptin expression by cyclic adenosine 5′-monophosphate involves cross talk between protein kinase A and mitogen-activated protein kinase signaling pathways. Endocrinology 151(8):3738–3751. doi:10.1210/en.2010-0064

    CAS  PubMed  Google Scholar 

  • Melton LJ 3rd, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S (2007) Structural determinants of vertebral fracture risk. Journal of Bone and Mineral Research: the official journal of the American Society for Bone and Mineral Research 22(12):1885–1892. doi:10.1359/jbmr.070728

    Google Scholar 

  • Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107(2):832–837. doi:10.1073/pnas.0913170107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radical Biol Med 43(4):477–503. doi:10.1016/j.freeradbiomed.2007.03.034

    CAS  Google Scholar 

  • Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624. doi:10.1038/nm1574

    CAS  PubMed  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17(10):1231–1234. doi:10.1038/nm.2452

    CAS  PubMed  Google Scholar 

  • Onal M, Piemontese M, Xiong J, Wang Y, Han L, Ye S, Komatsu M, Selig M, Weinstein RS, Zhao H, Jilka RL, Almeida M, Manolagas SC, O’Brien CA (2013) Suppression of autophagy in osteocytes mimics skeletal aging. J Biol Chem 288(24):17432–17440. doi:10.1074/jbc.M112.444190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pietschmann P, Skalicky M, Kneissel M, Rauner M, Hofbauer G, Stupphann D, Viidik A (2007) Bone structure and metabolism in a rodent model of male senile osteoporosis. Exp Gerontol 42(11):1099–1108. doi:10.1016/j.exger.2007.08.008

    CAS  PubMed  Google Scholar 

  • Pua HH, Guo J, Komatsu M, He YW (2009) Autophagy is essential for mitochondrial clearance in mature T lymphocytes. Journal of immunology (Baltimore, Md: 1950) 182 (7):4046-4055. doi:10.4049/jimmunol.0801143

  • Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8(3):199–213. doi:10.1016/j.arr.2009.05.001

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. doi:10.1152/physrev.00030.2009

    CAS  PubMed  Google Scholar 

  • Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam study. J Bone Miner Res 22(11):1781–1790. doi:10.1359/jbmr.070712

    PubMed  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695. doi:10.1016/j.cell.2011.07.030

    CAS  PubMed  Google Scholar 

  • Settembre C, Arteaga-Solis E, McKee MD, de Pablo R, Al Awqati Q, Ballabio A, Karsenty G (2008) Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev 22(19):2645–2650. doi:10.1101/gad.1711308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18(3):250–260. doi:10.1111/j.1755-5949.2012.00295.x

    CAS  PubMed  Google Scholar 

  • Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281(20):14474–14485. doi:10.1074/jbc.M600364200

    CAS  PubMed  Google Scholar 

  • Song ZC, Zhou W, Shu R, Ni J (2012) Hypoxia induces apoptosis and autophagic cell death in human periodontal ligament cells through HIF-1alpha pathway. Cell Prolif 45(3):239–248. doi:10.1111/j.1365-2184.2012.00810.x

    CAS  PubMed  Google Scholar 

  • Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24(4):737–743. doi:10.1359/jbmr.081223

    PubMed  Google Scholar 

  • Syed FA, Hoey KA (2010) Integrative physiology of the aging bone: insights from animal and cellular models. Ann N Y Acad Sci 1211:95–106. doi:10.1111/j.1749-6632.2010.05813.x

    PubMed  Google Scholar 

  • Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6(5):600–606. doi:10.4161/auto.6.5.11947

    CAS  PubMed  Google Scholar 

  • Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13(1):1–9. doi:10.1007/s10495-007-0154-9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorburn J, Moore F, Rao A, Barclay WW, Thomas LR, Grant KW, Cramer SD, Thorburn A (2005) Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell 16(3):1189–1199. doi:10.1091/mbc.E04-10-0906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534. doi:10.1038/sj.cdd.4401777

    CAS  PubMed  Google Scholar 

  • Vellai T (2009) Autophagy genes and ageing. Cell Death Differ 16(1):94–102. doi:10.1038/cdd.2008.126

    CAS  PubMed  Google Scholar 

  • Wang L, Banu J, McMahan CA, Kalu DN (2001) Male rodent model of age-related bone loss in men. Bone 29(2):141–148

    CAS  PubMed  Google Scholar 

  • Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45(2):138–148. doi:10.1016/j.exger.2009.11.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia X, Kar R, Gluhak-Heinrich J, Yao W, Lane NE, Bonewald LF, Biswas SK, Lo WK, Jiang JX (2010) Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res 25(11):2479–2488. doi:10.1002/jbmr.160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17(10):1235–1241. doi:10.1038/nm.2448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ye W, Xu K, Huang D, Liang A, Peng Y, Zhu W, Li C (2011) Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus. Connect Tissue Res 52(6):472–478. doi:10.3109/03008207.2011.564336

    CAS  PubMed  Google Scholar 

  • Ye W, Zhu W, Xu K, Liang A, Peng Y, Huang D, Li C (2013) Increased macroautophagy in the pathological process of intervertebral disc degeneration in rats. Connect Tissue Res 54(1):22–28. doi:10.3109/03008207.2012.715702

    CAS  PubMed  Google Scholar 

  • Zahm AM, Bohensky J, Adams CS, Shapiro IM, Srinivas V (2011) Bone cell autophagy is regulated by environmental factors. Cells Tissues Organs 194(2–4):274–278. doi:10.1159/000324647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YB, Zhong ZM, Hou G, Jiang H, Chen JT (2011) Involvement of oxidative stress in age-related bone loss. J Surg Res 169(1):e37–e42. doi:10.1016/j.jss.2011.02.033

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the funds from the Commission of Science Technology of Shanghai (11JC1408500).

Conflicts of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei-Sheng Jiang.

Additional information

Ke Chen and Yue-Hua Yang have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Yang, YH., Jiang, SD. et al. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochem Cell Biol 142, 285–295 (2014). https://doi.org/10.1007/s00418-014-1194-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1194-1

Keywords

Navigation