Skip to main content

Uncertainty Analysis of Hydrologic Forecasts Based on Copulas

  • Chapter
  • First Online:
Copulas and Its Application in Hydrology and Water Resources

Part of the book series: Springer Water ((SPWA))

Abstract

A hydrologic uncertainty processor (HUP) that the prior density and likelihood function are explicitly expressed is introduced based on a copula function. The results show that the copula-based HUP is comparable to the meta-Gaussian HUP regarding the posterior median forecasts. Besides, the probabilistic forecasts produced by the copula-based HUP have slightly higher reliability and lower resolution, as compared to those of the meta-Gaussian HUP. A Copula Bayesian processor associated with the Bayesian model averaging (CBP-BMA) method is used with ensemble lumped hydrological models. Compared with the BMA and Copula-BMA methods, the CBP-BMA method relaxes any assumption on the distribution of conditional PDFs. The case study results demonstrate that the CBP-BMA method can improve hydrological forecasting precision with higher coverage ratios. The copula-based HUP and CBP-BMA methods provide alternative approaches to uncertainty analysis of hydrological forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajami NK, Duan QY, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(1):W01403

    Article  Google Scholar 

  • Arya DS, Goel NK, Dhamy AP (2010) Design flow and stage computations in the Teesta River, Bangladesh, using frequency analysis and MIKE 11 modeling. J Hydrol Eng 16(2):176–186

    Google Scholar 

  • Ba HH, Guo SL, Wang Y, Hong XJ, Zhong YX (2017) Improving ANN model performance in runoff forecasting by adding soil moisture input and using data preprocessing techniques. Hydrol Res

    Google Scholar 

  • Bárdossy Götzinger J (2008) A Generic error model for calibration and uncertainty estimation of hydrological models. Water Resour Res 44(12):1393–1442

    Google Scholar 

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44:W07412

    Article  Google Scholar 

  • Bergstrand M, As SS, Lindström G (2014) Nationwide hydrological statistics for Sweden with high resolution using the hydrological model S-HYPE. Hydrol Res 45(3):349–356

    Article  Google Scholar 

  • Biondi D, De Luca DL (2013) Performance assessment of a Bayesian forecasting system (BFS) for real-time flood forecasting. J Hydrol 479(1):51–63

    Article  Google Scholar 

  • Biondi D, Versace P, Sirangelo B (2010) Uncertainty assessment through a precipitation dependent hydrologic uncertainty processor: an application to a small catchment in southern Italy. J Hydrol 386(1):38–54

    Article  Google Scholar 

  • Bogner K, Pappenberger F, Cloke HL (2012) Technical note: the normal quantile transformation and its application in a flood forecasting system. Hydrol Earth Syst Sci 16(4):1085–1094

    Article  Google Scholar 

  • Calvo B, Savi F (2009) Real-time flood forecasting of the Tiber River in Rome. Nat Hazards 50(3):461–477

    Article  Google Scholar 

  • Carreau J, Bouvier C (2016) Multivariate density model comparison for multi-site flood-risk rainfall in the French Mediterranean area. Stoch Env Res Risk Assess 30(6):1591–1612

    Article  Google Scholar 

  • Castellarin A, Vogel RM, Brath A (2004) A stochastic index flow model of flow duration curves. Water Resour Res 40(3). https://doi.org/10.1029/2003wr002524

  • Chebana F, Ouarda TBMJ (2007) Multivariate L-moment homogeneity test. Water Resour Res 43(8):199–212

    Article  Google Scholar 

  • Chen ST, Yu PS (2007) Real-time probabilistic forecasting of flood stages. J Hydrol 340:63–77

    Article  Google Scholar 

  • Chen L, Guo SL, Yan B, Pan L, Fang B (2010) A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrol Sci J 55(8):1264–1280

    Article  Google Scholar 

  • Chen FJ, Jiao MY, Chen J (2013) The meta-Gaussian Bayesian processor of forecasts and associated preliminary experiments. Acta Meteorologica Sinica 27:199–210

    Article  Google Scholar 

  • Chen L, Singh VP, Guo SL, Zhou J, Ye L (2014a) Copula entropy coupled with artificial neural network for rainfall-runoff simulation. Stoch Env Res Risk Assess 28(7):1755–1767

    Article  Google Scholar 

  • Chen L, Ye L, Singh VP, Asce F, Zhou J, Guo SL (2014b) Determination of input for artificial neural networks for flood forecasting using the copula entropy method. J Hydrol Eng 19(11):04014021

    Article  Google Scholar 

  • Chen L, Zhang Y, Zhou J, Singh VP, Guo SL, Zhang J (2015) Real-time error correction method combined with combination flood forecasting technique for improving the accuracy of flood forecasting. J Hydrol 521:157–169

    Article  Google Scholar 

  • Cheng C, Zhao M, Chau K, Wu X (2006) Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. J Hydrol 316(1):129–140

    Article  Google Scholar 

  • Chiew FHS, Teng J, Vaze J, Post DA, Perraud JM, Kirono DGC, Viney NR (2009) Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method. Water Resour Res 45(10):82–90

    Article  Google Scholar 

  • Coccia G, Todini E (2011) Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol Earth Syst Sci 15(10):3253–3274

    Article  Google Scholar 

  • Dong LH, Xiong LH, Yu KX (2013) Uncertainty analysis of multiple hydrologic models using the bayesian model averaging method. J Appl Math 2013:1–11

    Google Scholar 

  • Duan QY, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30(5):1371–1386

    Article  Google Scholar 

  • Engeland K, Renard B, Steinsland I, Kolberg S (2010) Evaluation of statistical models for forecast errors from the HBV model. J Hydrol 384(1):142–155

    Article  Google Scholar 

  • Evin G, Thyer M, Kavetski D, Mcinerney D, Kuczera G (2014) Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour Res 50(3):2350–2375

    Article  Google Scholar 

  • Fan YR, Huang GH, Li YP, Wang XQ, Li Z (2016) Probabilistic prediction for monthly streamflow through coupling stepwise cluster analysis and quantile regression methods. Water Resour Manag 30(14):5313–5331

    Article  Google Scholar 

  • Favre AC, Adlouni SE, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40W01101. https://doi.org/10.1029/2003wr002456

  • Freer J, Beven K, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32(7):2161–2173

    Article  Google Scholar 

  • Genest C, Favre A (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Gneiting T, Raftery AE, Westveld AH, Goldman T (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon Weather Rev 133(5):1098–1118

    Article  Google Scholar 

  • Gneiting T, Balabdaoui F, Raftery AE (2007) Probabilistic forecasts, calibration and sharpness. J Roy Stat Soc: Ser B (Stat Methodol) 69(2):243–268

    Article  MathSciNet  MATH  Google Scholar 

  • Gottschalk L, Yu K, Leblois E, Xiong L (2013) Statistics of low flow: theoretical derivation of the distribution of minimum streamflow series. J Hydrol 481:204–219

    Article  Google Scholar 

  • Guo SL, Zhang H, Chen H, Peng D, Liu P, Pang B (2004) A reservoir flood forecasting and control system for China. Hydrol Sci J 49(6):959–972

    Article  Google Scholar 

  • He SK, Guo SL, Liu ZJ, Yin JB, Chen KB, Wu XS. (2018) Uncertainty analysis of hydrological multi-model ensembles based on CBP-BMA method. Hydrol Res (in press)

    Google Scholar 

  • Hemri S, Lisniak D, Klein B (2015) Multivariate post-processing techniques for probabilistic hydrological forecasting. Water Resour Res 51(9):7436–7451

    Article  Google Scholar 

  • Hersbach H (2000) Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather Forecast 15(5):559–570

    Article  Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Roy Stat Soc 52(1):105–124

    MathSciNet  MATH  Google Scholar 

  • Kasiviswanathan KS, Cibin R, Sudheer KP, Chaubey I (2013) Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J Hydrol 499:275–288

    Article  Google Scholar 

  • Khajehei S, Moradkhani H (2017) Towards an improved ensemble precipitation forecast: a probabilistic post-processing approach. J Hydrol 546:476–489

    Article  Google Scholar 

  • Klein B, Meissner D, Kobialka HU, Reggiani P (2016) Predictive uncertainty estimation of hydrological multi-model ensembles using pair-copula construction. Water 8(4):1–22

    Article  Google Scholar 

  • Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 424–425:264–277

    Article  Google Scholar 

  • Koutsoyiannis D, Montanari A (2015) Negligent killing of scientific concepts: the stationarity case. Hydrol Sci J 60(7–8):1174–1183

    Article  Google Scholar 

  • Kroese DP, Taimre T, Botev ZI (2013) Handbook of Monte Carlo methods. Wiley, New York

    MATH  Google Scholar 

  • Krzysztofowicz R (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour Res 35(9):2739–2750

    Article  Google Scholar 

  • Krzysztofowicz R, Kelly KS (2000) Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour Res 36(11):3265–3277

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm. J Hydrol 211(1–4):69–85

    Article  Google Scholar 

  • Laio F, Tamea S (2007) Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol Earth Syst Sci 11(4):1267–1277

    Article  Google Scholar 

  • Li L, Xia J, Xu CY, Singh VP (2010a) Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. J Hydrol 390(3):210–221

    Article  Google Scholar 

  • Li X, Guo SL, Liu P, Chen G (2010b) Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty. J Hydrol 391:124–132

    Article  Google Scholar 

  • Li Z, Xin P, Tang J (2011) Study of the Xinanjiang model parameter calibration. J Hydrol Eng 18(11):1513–1521

    Google Scholar 

  • Li H, Beldring S, Xu CY (2014) Implementation and testing of routing algorithms in the distributed HBV model for mountainous catchments. Hydrol Res 45(3):322–333

    Article  Google Scholar 

  • Liang G, Kachroo RK, Kang W, Yu X (1992) River flow forecasting. part 4. applications of linear modelling techniques for flow routing on large catchments. J Hydrol 133(1):99–140

    Article  Google Scholar 

  • Liang Z, Wang D, Guo Y, Zhang Y, Dai R (2011) Application of Bayesian model averaging approach to multimodel ensemble hydrologic forecasting. J Hydrol Eng 18(11):1426–1436

    Article  Google Scholar 

  • Lin K, Lv F, Chen L, Singh VP, Zhang Q, Chen X (2014) Xinanjiang model combined with Curve Number to simulate the effect of land use change on environmental flow. J Hydrol 519:3142–3152

    Article  Google Scholar 

  • Liu ZJ, Guo SL, Zhang HG, Liu DD, Yang G (2016) Comparative study of three updating procedures for real-time flood forecasting. Water Resour Manag 30(7):2111–2126

    Article  Google Scholar 

  • Liu ZJ, Guo SL, Xiong LH, Xu CY (2017) Hydrological uncertainty processor based on a copula function. Hydrol Sci. J. https://doi.org/10.1080/02626667.2017.1410278

  • Liucci L, Valigi D, Casadei S (2014) A new application of flow duration curve (FDC) in designing run-of-river power plants. Water Resour Manag 28(3):881–895

    Article  Google Scholar 

  • Ma Z, Li Z, Zhang M, Fan Z (2013) Bayesian statistic forecasting model for middle-term and long-term runoff of a hydropower station. J Hydrol Eng 18(11):1458–1463

    Article  Google Scholar 

  • Madadgar S, Moradkhani H (2014) Improved bayesian multimodeling: integration of copulas and bayesian model averaging. Water Resour Res 50(12): 9586–9603

    Article  Google Scholar 

  • Madadgar S, Moradkhani H, Garen D (2014) Towards improved post-processing of hydrologic forecast ensembles. Hydrol Process 28(1):104–122

    Article  Google Scholar 

  • Madsen H (2000) Automatic calibration of a conceptual rain-fall model using multiple objectives. J Hydrol 235:276–288

    Article  Google Scholar 

  • Möller A, Lenkoski A, Thorarinsdottir TL (2013) Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. J Roy Meteorol Soc 139(673):982–991

    Article  Google Scholar 

  • Montanari A (2007) What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Process 21(6):841–845

    Article  Google Scholar 

  • Montanari A, Grossi G (2008) Estimating the uncertainty of hydrological forecasts: a statistical approach. Water Resour Res 44:W00B08. https://doi.org/10.1029/2008-wr006897

    Article  Google Scholar 

  • Montero RA, Schwanenberg D, Krahe P, Lisniak D, Sensoy A, Sorman AA, Akkol B (2016) Moving horizon estimation for assimilating H-SAF remote sensing data into the HBV hydrological model. Adv Water Resour 92:248–257

    Article  Google Scholar 

  • Nash J, Sutcliffe JV (1970) River flow forecasting through conceptual models part I-A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Nasonova ON, Gusev YM, Kovalev YE (2009) Investigating the ability of a land surface model to simulate streamflow with the accuracy of hydrological models: a case study using MOPEX materials. J Hydrometeorol 10(5):1128–1150

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Pappenberger F, Ramos MH, Cloke HL, Wetterhall F, Alfieri L, Bogner K (2015) How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. J Hydrol 522:697–713

    Article  Google Scholar 

  • Pokhrel P, Robertson D, Wang QJ (2013) A Bayesian joint probability post-processor for reducing errors and quantifying uncertainty in monthly streamflow predictions. Hydrol Earth Syst Sci 17(2):795–804

    Article  Google Scholar 

  • Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133(5):1155–1174

    Article  Google Scholar 

  • Ramos MH, van Andel SJ, Pappenberger F (2013) Do probabilistic forecasts lead to better decisions? Hydrol Earth Syst Sci 17(6):2219–2232

    Article  Google Scholar 

  • Ravines RR, Schmidt AM, Migon HS, Rennó CD (2008) A joint model for rainfall-runoff: the case of Rio Grande Basin. J Hydrol 353(1):189–200

    Article  Google Scholar 

  • Reggiani P, Weerts AH (2008) A Bayesian approach to decision-making under uncertainty: an application to real-time forecasting in the river Rhine. J Hydrol 356(1):56–69

    Article  Google Scholar 

  • Renard B, Kavetski D, Kuczera G, Thyer M, Franks SW (2010) Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour Res 46(5) https://doi.org/10.1029/2009wr008328

  • Robert C, Casella G (2011) A short history of markov chain monte carlo: subjective recollections from incomplete data. Stat Sci 26(1):102–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Robert C, Casella G (2013) Monte Carlo statistical methods. Springer, New York

    MATH  Google Scholar 

  • Seo DJ, Herr HD, Schaake JC (2006) A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrol Earth Syst Sci 3(4):1987–2035

    Article  Google Scholar 

  • Shao QX, Zhang L, Chen YD, Singh VP (2009) A new method for modelling flow duration curves and predicting streamflow regimes under altered land-use conditions. Hydrol Sci J 54(3):606–622

    Article  Google Scholar 

  • Si W, Bao W, Gupta HV (2015) Updating real-time flood forecasts via the dynamic system response curve method. Water Resour Res 51(7):5128–5144

    Article  Google Scholar 

  • Sikorska AE, Scheidegger A, Banasik K, Rieckermann J (2012) Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models. Hydrol Earth Syst Sci 16(4):1221–1236

    Article  Google Scholar 

  • Smith LA, Suckling EB, Thompson EL, Maynard T, Du H (2015) Towards improving the framework for probabilistic forecast evaluation. Clim Change 132(1):31–45

    Article  Google Scholar 

  • Thyer M, Renard B, Kavetski D, Kuczera G, Franks SW, Srikanthan S (2009) Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour Res 45(12). https://doi.org/10.1029/2008wr006825

  • Tsai CN, Adrian DD, Singh VP (2001) Finite Fourier probability distribution and applications. J Hydrol Eng 6(6):460–471

    Article  Google Scholar 

  • Verkade JS, Werner MGF (2011) Estimating the benefits of single value and probability forecasting for flood warning. Hydrol Earth Syst Sci 15(12):3751–3765

    Article  Google Scholar 

  • Vogel RM, Fennessey NM (1994) Flow-duration curves. I: new interpretation and confidence intervals. J Water Resour Plann Manag 120(4):485–504

    Article  Google Scholar 

  • Vogel RM, Fennessey NM (1995) Flow-duration curves. II: a review of applications in water resources planning. J Am Water Resour Assoc 31(6):1029–1039

    Article  Google Scholar 

  • Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43(1):223–228

    Article  Google Scholar 

  • Weerts AH, Winsemius HC, Verkade JS (2011) Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales). Hydrol Earth Syst Sci 15(1):255–265

    Article  Google Scholar 

  • Wetterhall F, Pappenberger F, Cloke HL, Pozo JT (2013) Forecasters priorities for improving probabilistic flood forecasts. Hydrol Earth Syst Sci 17(11):4389–4399

    Article  Google Scholar 

  • Wu J, Zhou JZ, Chen L, Ye L (2015) Coupling forecast methods of multiple rainfall–runoff models for improving the precision of hydrological forecasting. Water Resour Manage 29(14):5091–5108

    Article  Google Scholar 

  • Wu XS, Wang ZL, Guo SL, Liao W, Zeng Z, Chen X (2017) Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: a case study in Dongguan City, China. J Hydrol 547:428–442

    Article  Google Scholar 

  • Xiong LH, Guo SL (1999) A two-parameter monthly water balance model and its application. J Hydrol 216(1):111–123

    Article  Google Scholar 

  • Xiong LH, Min W, Wei XJ, O’Connor KM (2009) Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol Sci J 54(5):852–871

    Article  Google Scholar 

  • Xiong LH, Yu KX, Gottschalk L (2014) Estimation of the distribution of annual runoff from climatic variables using copulas. Water Resour Res. https://doi.org/10.1029/2008WR006897

    Article  Google Scholar 

  • Xiong L, Du T, Xu CY, Guo SL, Jiang C, Gippel CJ (2015) Non-Stationary annual maximum flood frequency analysis using the norming constants method to consider non-Stationarity in the annual daily flow series. Water Resour Manag 29(10):3615–3633

    Article  Google Scholar 

  • Xu H, Xu CY, Chen H, Zhang Z, Li L (2013) Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J Hydrol 505:1–12

    Article  Google Scholar 

  • Yokoo Y, Sivapalan M (2011) Towards reconstruction of the flow duration curve: development of a conceptual framework with a physical basis. Hydrol Earth Syst Sci 15(9):2805–2819

    Article  Google Scholar 

  • Yu B, Zhu Z (2015) A comparative assessment of AWBM and SimHyd for forested watersheds. Hydrol Sci J 60(7):1–13

    Google Scholar 

  • Yu KX, Xiong LH, Gottschalk L (2014) Derivation of low flow distribution functions using copulas. J Hydrol 508:273–288

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2007a) Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 332(1):93–109

    Article  Google Scholar 

  • Zhang L, Singh VP (2007b) Gumbel-Hougaard copula for trivariate rainfall frequency analysis. J Hydrol Eng 12(4):409–419

    Article  Google Scholar 

  • Zhang L, Singh VP (2007c) Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J Hydrol Eng 12(4):431–439

    Article  Google Scholar 

  • Zhang Q, Chen YD, Chen X, Li J (2011) Copula-based analysis of hydrological extremes and implications of hydrological behaviors in the Pearl River basin, China. J Hydrol Eng 16(7):598–607

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP (2012) Application of Archimedean copulas in the analysis of the precipitation extremes: effects of precipitation changes. Theor Appl Climatol 107(1–2):255–264

    Article  Google Scholar 

  • Zhang J, Chen L, Singh VP, Cao W, Wang D (2015) Determination of the distribution of flood forecasting error. Nat Hazards 75(2):1389–1402

    Article  Google Scholar 

  • Zhao RJ (1992) The Xinanjiang model applied in China. J Hydrol 135(1–4):371–381

    Google Scholar 

  • Zhao T, Wang QJ, Bennett JC, Robertson DE, Shao Q, Zhao J (2015) Quantifying predictive uncertainty of streamflow forecasts based on a Bayesian joint probability model. J Hydrol 528:329–340

    Article  Google Scholar 

  • Zhou YL, Guo SL, Xu CY, Chen H, Guo J, Lin K (2016) Probabilistic prediction in ungauged basins (PUB) based on regional parameter estimation and Bayesian model averaging. Hydrol Res 47(6):1087–1103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L., Guo, S. (2019). Uncertainty Analysis of Hydrologic Forecasts Based on Copulas. In: Copulas and Its Application in Hydrology and Water Resources. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-13-0574-0_8

Download citation

Publish with us

Policies and ethics