Skip to main content
Log in

Real-time flood forecasting of the Tiber river in Rome

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

An adaptive, conceptual model for real-time flood forecasting of the Tiber river in Rome is proposed. This model simulates both rainfall-runoff transformations, to reproduce the contributions of 37 ungauged sub-basins that covered about 30% of the catchment area, and flood routing processes in the hydrographic network. The adaptive component of the model concerns the rainfall-runoff analysis: at any time step the whole set of the model parameters is recalibrated by minimizing the objective function constituted by the sum of the squares of the differences between observed and computed water surface elevations (or discharges). The proposed model was tested through application under real-time forecasting conditions for three historical flood events. To assess the forecasting accuracy, to support the decision maker and to reduce the possibility of false or missed warnings, confidence intervals of the forecasted water surface elevations (or discharges), computed according to a Monte Carlo procedure, are provided. The evaluation of errors in the prediction of peak values, of coefficients of persistence and of the amplitude of confidence intervals of prediction shows the possibility to develop a flood forecast model with a lead time of 12 h, which is useful for civil protection actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bencivenga M, Calenda G, Mancini CP (2001) Ricostruzione storica delle scale di deflusso delle principali stazioni di misura nel bacino del fiume Tevere—Il secolo XX. Presidenza del Consiglio dei Ministri, Servizi Tecnici Nazionali, Rome

    Google Scholar 

  • Bonafè A, Galeati G, Sforna F (1994) Neural networks for daily mean flow forecasting. In: Blain VWR, Katsifarakis KL (eds) Hydrologic engineering software, vol 1. Computational Mechanics Publications, Southampton, UK, pp 131–138

    Google Scholar 

  • Brath A, Rosso R (1993) Adaptive calibration of conceptual model for flash flood forecasting. Water Resour Res 29(8):2561–2572. doi:10.1029/93WR00665

    Article  Google Scholar 

  • Calenda G, Casaioli M, Cosentino C, Mantovani R, Speranza A (2000) Flood forecasting in the Tiber catchment area: a methodological analysis. Ann Geofis 43(5):870–888

    Google Scholar 

  • Calvo B, Savi F (2006) Real-time flood forecasting of Tiber river in Rome. In: Wamkeue R (ed) Proceedings of IASTED international conference on modelling and simulation, Montreal, pp 552–556

  • Calvo B, Petaccia A, Savi F (2007) Simulazione della piena di fine novembre 2005 lungo il medio-basso Tevere. Acqua 4:31–42

    Google Scholar 

  • Corradini C, Morbidelli R, Saltalippi C, Melone F (2004) Flood forecasting and infiltration modelling. Hydrol Sci J 49(2):227–236. doi:10.1623/hysj.49.2.227.34840

    Article  Google Scholar 

  • Cunge J, Holly FM, Verwey A (1980) Practical aspects of computational river hydraulics. Pittman Publishing, Boston

    Google Scholar 

  • Dal Cin C, Moens L, Dierickx Ph, Bastin G, Zech Y (2005) An integrated approach for realtime floodmap forecasting on the belgian Meuse river. Nat Hazards 36:237–256. doi:10.1007/s11069-004-4551-x

    Article  Google Scholar 

  • Gallagher M, Doherty J (2007) Parameter estimation and uncertainty analysis for a watershed model. Environ Model Softw 22(7):1000–1020. doi:10.1016/j.envsoft.2006.06.007

    Article  Google Scholar 

  • Giandotti M (1934) Previsione delle piene e delle magre nei corsi d’acqua. Ministero LLPP, Servizio Idrografico Italiano, Rome

    Google Scholar 

  • Kelly KS, Krzysztofowicz R (2000) Precipitation uncertainty processor for probabilistic river stage forecasting. Water Resour Res 36(9):2643–2653. doi:10.1029/2000WR900061

    Article  Google Scholar 

  • Kitanidis PK, Bras R (1980) Real-time forecasting with a conceptual hydrologic model. 2. Applications and results. Water Resour Res 16(6):1034–1044. doi:10.1029/WR016i006p01034

    Article  Google Scholar 

  • Krzysztofowicz R (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour Res 35(9):2739–2750. doi:10.1029/1999WR900099

    Article  Google Scholar 

  • Krzysztofowicz R (2001) Bayesian system for probabilistic river stage forecasting. J Hydrol (Amst) 268:16–40. doi:10.1016/S0022-1694(02)00106-3

    Article  Google Scholar 

  • Lettenmaier DP, Wood EF (1993) Hydrologic forecasting. In: Maidment DR (ed) Handbook of hydrology, Chap 26. McGraw-Hill Inc, New York, pp 26.1–26.30

  • Moramarco T, Barbetta S, Melone F, Singh VP (2006) A real-time stage Muskingum forecasting model for a site without rating curve. Hydrol Sci J 51(1):66–82. doi:10.1623/hysj.51.1.66

    Article  Google Scholar 

  • Nash JE (1957) The form of the instantaneous unit hydrograph. IAHS Publ 45(3–4):121–141

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River-flow forecasting through conceptual models, part I—A discussion of principles. J Hydrol (Amst) 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Natale L, Savi F (2007) Monte Carlo analysis of probability of inundation of Rome. Environ Model Softw 22(10):1409–1416. doi:10.1016/j.envsoft.2006.12.004

    Article  Google Scholar 

  • Reed DW (1984) A review of British flood forecasting practice. Institute of Hydrology, Wallingford. Technical Report No. 90, pp 1–114

  • Robertson DG, Lee JH, Rawlings JB (1996) A moving horizon-based approach for least squares estimation. AIChE J 42(8):2209–2224. doi:10.1002/aic.690420811

    Article  Google Scholar 

  • S.C.S (1985) National engineering handbook, Section 4—hydrology. Water Resources Publication, Littleton

    Google Scholar 

  • Tayfur G, Moramarco T, Singh VP (2007) Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrol Process 21:1848–1859. doi:10.1002/hyp.6320

    Article  Google Scholar 

  • Todini E (1999) An operational decision support system for flood risk mapping, forecasting and management. Urban Water 1(2):131–143. doi:10.1016/S1462-0758(00)00010-8

    Article  Google Scholar 

  • Toth E, Montanari A, Brath A (1999) Real-time flood forecasting via combined use of conceptual and stochastic model. Phys Chem Earth B 24(7):793–798

    Google Scholar 

  • Uan M (1984) Principe de résolution de modélisation filaires des écoulements a surface libre: application a un ressue maille. EDF HE/43-80-40 Report, Grenoble

  • Wang QJ (1991) The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resour Res 27(9):2467–2471. doi:10.1029/91WR01305

    Article  Google Scholar 

  • Wang QJ (1997) Using genetic algorithms to optimise model parameters. Environ Model Softw 12(1):27–34. doi:10.1016/S1364-8152(96)00030-8

    Article  Google Scholar 

  • World Meteorological Organisation (1992) Simulated real-time intercomparison of hydrological models. WMO Report No. 38

  • Yu PS, Yang TC (1997) A probability-based renewal rainfall model for flow forecasting. Nat Hazards 15:51–70. doi:10.1023/A:1007946628274

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the three anonymous reviewers for their detailed and constructive comments and suggestions that improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Savi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo, B., Savi, F. Real-time flood forecasting of the Tiber river in Rome. Nat Hazards 50, 461–477 (2009). https://doi.org/10.1007/s11069-008-9312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-008-9312-9

Keywords

Navigation