Skip to main content

Nitrogen and Legumes: A Meta-analysis

  • Chapter
  • First Online:
Legumes for Soil Health and Sustainable Management

Abstract

The current progress in agricultural production does not really cater to the demand of the burgeoning human population. Consequently, this puts global food and nutritional security at a great risk. This challenge calls for concerted efforts of all stakeholders to produce required quantity and quality of assured foods for ensuring food security. In the past, the principal driving force was to increase the yield potential of food crops and to maximize productivity. Today, the drive for productivity is increasingly combined with a desire for sustainability. For farming systems to remain productive and to be sustainable in the long term, it will be necessary to replenish the reserves of nutrients which are removed or lost from the soil. The nitrogen (N) inputs derived from atmospheric N via biological N fixation (BNF). Therefore, current farming systems need sustainable intensification through the inclusion of legume crops. This facilitates the precise use of nitrogen (N) by reducing their losses into the environment and ensures self-sufficiency in protein. The relevance of legumes in this context is enhanced as these crops offer numerous amenities that remain in line with prevalent sustainability principles. Legume crops provide protein-rich food, oil and fibre while supplying the 195 Tg N year−1 (also includes actinorhizal species) to the agroecosystem through the process of biological nitrogen fixation (BNF). Besides serving as the fundamental global source of good-quality food and feed, legume crops contribute to 15% of the N in an intercropped cereal and mitigate the emission of greenhouse gases (GHGs) by reducing the application demand of synthetic nitrogenous fertilizers. Legume cultivation releases up to seven times less GHGs per unit area than non-legume crops. Legumes allow the sequestration of carbon (1.42 Mg C ha−1 year−1) in soils and induce the conservation of fossil energy inputs in the system. The other benefits of legume crops include their significant positive impacts on biodiversity and soil health. Rotating legume crops with non-legume crops has the dual advantage of cultivating the legumes with slight or no extra N fertilizer. Care should be taken to ensure the availability of adequate N for the succeeding non-legume crops. The legume crops respond very well to conservation of agricultural practices. Overall, these characteristics are crucial to agriculture both in developing and developed countries apart from the conventional farming systems. Legumes in rotation promote exploration of nutrients by crops from different soil layers. They also help in reducing pressure on soil created by monocropping. Thus, crop rotation acts like a biological pump to recycle the nutrients. Hence, inclusion of legumes in the cropping system is inevitable to advance soil sustainability and food and nutritional security without compromising on the long-term soil fertility potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine-5′-triphosphate

BNF:

Biological nitrogen fixation

GHGs:

Greenhouse gases

GWP:

Global warming potential

N:

Nitrogen

NUE:

Nitrogen use efficiency

SOC:

Soil organic carbon

SPA:

Soil-plant-atmosphere

References

  • Adeleke MA, Haruna IM (2012) Residual nitrogen contributions from grain legumes to the growth and development of succeeding maize crop. ISRN Agron. https://doi.org/10.5402/2012/213729

  • Ahlawat IPS, Gangaiah B (2004) Grain legumes farmers own nitrogen fertilizer units role revisited. In: Souvenir: national symposium on resource conservation and agricultural productivity, 22–25 November, Ludhiana

    Google Scholar 

  • Ahmad T, Hafeez FY, Mahmood T, Malik K (2001) Residual effect of nitrogen fixed by mungbean (Vigna radiata) and blackgram (Vigna mungo) on subsequent rice and wheat crops. Aus J Exp Agric 41:245–248

    Article  Google Scholar 

  • Ambrosano EJ, Trivelin PCO, Cantarella H, Ambrosano GMB, Schammass EA, Guirado N, Rossi F, Mendes PCD, Muraoka T (2005) Utilization of nitrogen from green manure and mineral fertilizer by sugarcane. Sci Agric 62:534–542

    Article  Google Scholar 

  • Ambrosano EJ, Trivelin PCO, Cantarella H, Ambrosano GMB, Schammass EA, Muraoka T, Guirado N, Rossi F (2009) Nitrogen supply to maize from sunn hemp and velvet bean green manures. Sci Agric 66:386–394

    Article  Google Scholar 

  • Ambrosano EJ, Ambrosano GMB, Azcón R, Cantarella H, Dias FLF, Muraoka T, Trivelin PCO, Rossi F, Schammass EA, Sachs RCC (2011) Productivity of sugarcane after previous legumes crop. Bragantia 70(4):1–9. https://doi.org/10.5772/53825

    Article  CAS  Google Scholar 

  • Angus JF, Kirkegaard JA, Hunt JR, Ryan MH, Ohlander L, Peoples MB (2015) Break crops and rotations for wheat. Crop Pasture Sci 66:523–552

    Article  Google Scholar 

  • Aranjuelo I, Irigoyen JJ, Nogués S, Sánchez DM (2009) Elevated CO2 and water availability effect on gas exchange and nodule development in N2-fixing alfalfa plants. Environ Exp Bot 65:18–26

    Article  CAS  Google Scholar 

  • Banyong T, Viriya L, Sanun J, Aran P, Prabhakar P, Suhas P W, Sahrawat KL (2000) Role of legumes in improving soil fertility and increasing crop productivity in Northeast Thailand report

    Google Scholar 

  • Berg WA (1997) Residual nitrogen effects on wheat following legumes in the Southern Plains. J Plant Nutr 20:247–254

    Article  CAS  Google Scholar 

  • Bhat TA, Ahmad L, Ganai MA, Ul-Haq S, Khan OA (2015) Nitrogen fixing biofertilizers; mechanism and growth promotion: a review. J Pure Appl Microbiol 9(2):1675–1690

    CAS  Google Scholar 

  • Bonilla DP, Nolot JM, Raffaillac D, Justes E (2017) Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur J Agron 82:331–341

    Article  Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    Article  PubMed  Google Scholar 

  • Bruulsema TW, Christie BR (1987) Nitrogen contribution to succeeding corn from alfalfa and red clover. Agron J 79:96–100

    Article  Google Scholar 

  • Bundy LG (1998) Soil and applied, University of Wisconsin System Board of Regents and University of Wisconsin-Extension. A2519 Soil and applied nitrogen, R-07-98-IM-75 cecommerce.uwex.edu

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Carroll SB, Salt SD (2004) Ecology for gardeners. Timber Press, Portland, p 93. ISBN:978-0-88192-611-8

    Google Scholar 

  • Chafi MH, Bensoltane A (2003) Vicia faba (L), a source of organic and biological manures for the Algerian Arid regions. World J Agric Sci 5:698–706

    Google Scholar 

  • Chalk PM (1998) Dynamics of biologically fixed N in legume-cereal rotation: a review. Aust J Agric Res 49:303–316

    Article  CAS  Google Scholar 

  • Clune S, Crossin E, Verghese K (2017) Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 140:766–783

    Article  CAS  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agrobiofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Article  Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J App and Nat Sci 7(1):52–57

    CAS  Google Scholar 

  • Dalal RC, Doughton JA, Strong WM, Weston EJ, Cooper JE, Wildermuth GB, Lehane KJ, King AJ, Holmes CJ (1998) Sustaining productivity of a vertisol at Warra, Queensland, with fertilisers, no-tillage or legumes. Wheat yields, nitrogen benefits and water-use efficiency of chickpea-wheat rotation. Aust J Exp Agric 38:489–501

    Article  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability MDPI 9:1163. https://doi.org/10.3390/su9071163. 1–18

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Entry JA, Mitchell CC, Backman CB (1996) Influence of management practices on soil organic matter, microbial biomass and cotton yield in Alabamas Old Rotation. Biol Fertil Soils 23(4):353–358

    Article  CAS  Google Scholar 

  • Evans J, Fettell NA, Coventry DR, Connor GE, Walsgott DN, Mahoney J, Armstrong EL (1991) Wheat responses after temperate crop legumes in South-Eastern Australia. Aust J Agric Res 42:31–43

    Article  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW) managing systems at risk. Food and Agriculture Organization of the United Nations/Earthscan, Rome/London

    Google Scholar 

  • FAOSTAT (2014) http://www.fao.org/faostat/en/#data/RF. Update on 9/03/2017

  • Frame J (2005) Forage legumes for temperate grasslands. Science Publishers, Enfield USA and Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Frankow BE, Dahlin AS (2013) N2-fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. Plant Soil 370:567–581

    Article  CAS  Google Scholar 

  • Garrigues E, Corson MS, Walter C, Angers DA, Van der Werf H (2012) Soil quality indicators in LCA: method presentation with a case study. In: Corson MS, van der Werf HMG (eds) Proceedings of the 8th international conference on life cycle assessment in the agri-food sector, 1–4 October 2012. INRA, Saint Malo, pp 163–168

    Google Scholar 

  • Gibson AH (1976) In: Nutman PS (ed) Symbiotic nitrogen fixation in plants, In Biological Programme No. 7. Cambridge University Press, Cambridge, pp 385–403

    Google Scholar 

  • Gonzalez LJ, Rodelas C, Pozo V, Salmeron MV, Salmeron V (2005) Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids 28:363–367

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorich EG, Rochette PV, Bygaart AJ, Angers D (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res 81:53–72

    Article  Google Scholar 

  • Groffman P (2012) Terrestrial denitrification: challenges and opportunities. Ecol Process 1:112. https://doi.org/10.1186/2192:1709-1-11

    Article  Google Scholar 

  • Guardia G, Tellez-Rio A, García-Marco S, Martin-Lammerding D, Tenorio JL, Ibáñez MÁ, Vallejo A (2016) Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agric Ecosyst Environ 221:187–197

    Article  CAS  Google Scholar 

  • Gupta DK, Bhatiaa A, Kumar A, Das TK, Jain N, Tomar R, Sandeep KM, Fagodiya RK, Dubey R, Pathak H (2016) Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ 230:1–9

    Article  CAS  Google Scholar 

  • Hajduk E, Właśniewski S, Szpunar KE (2015) Influence of legume crops on content of organic carbon in sandy soil. Soil Sci Annu 66:52–56

    Article  CAS  Google Scholar 

  • Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2014) Soil fertility and fertilizers; An introduction to nutrient management, 8th edn. ISBN:978-81-203-4868-4

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hestermann OB, Sheaffer CC, Barnes DK, Lueschen WE, Ford JH (1986) Alfalfa dry matter and nitrogen production, and fertilizer nitrogen response in legume corn rotations. Agron J 78:19–23

    Article  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164

    Article  Google Scholar 

  • James W (2013) Nitrogen in soil and the environment. College of Agriculture and Life Science, Tucson

    Google Scholar 

  • Jannink JL, Liebman M, Merrick LC (1996) Biomass production and nitrogen accumulation in pea, oat, and vetch green manure mixtures. Agron J 88(2):231–240

    Article  Google Scholar 

  • Jensen ES, Hauggaard NH (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    Article  CAS  Google Scholar 

  • Jensen CR, Joernsgaard B, Andersen MN, Christiansen JL, Mogensen VO, Friis P, Petersen CT (2004) The effect of lupins as compared with peas and oats on the yield of the subsequent winter barley crop. Eur J Agron 20:405–418

    Article  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and bio refineries. A review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Jeuffroy MH, Baranger E, Carrouée B, Chezelles ED, Gosme M, Hénault C (2013) Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 10:1787–1797

    Article  CAS  Google Scholar 

  • Kabir Z, Koide RT (2002) Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant Soil 238(2):205–215

    Article  CAS  Google Scholar 

  • Kahindi J, Karanja N, Gueye M (2009) In: Doelle HW, Raken S, Berovic M (eds) Biological nitrogen fixation biotechnology, vol XV. Fundam Biotechnol. ISSBN:978-1-184826-269-0

    Google Scholar 

  • Kaiser EA, Kohrs K, Kücke M, Schnug E, Munch JC, Heinemeyer O (1998) Nitrous oxide (N2O) release from arable soil: importance of perennial forage crops. Biol Fertil Soils 28(1):36–43

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Christen O, Krupinsky J, Layzell DB (2008) Break crop benefits in temperate wheat production. Field Crop Res 107:185–195

    Article  Google Scholar 

  • Kumar S, Sheoran S, Kumar SK, Kumar P, Meena RS (2016) Drought: a challenge for Indian farmers in context to climate change and variability. Prog Res, An Int J 11:6243–6246

    Google Scholar 

  • Kumari S, Rajeshwari PS (2011) Symbiotic and asymbiotic nitrogen fixation. https://www.researchgate.net/publication/279534008

  • Kumbhar AM, Buriro UA, Junejo S, Oad FC, Jamro GH, Kumbhar BA, Kumbhar SA (2008) Impact of different nitrogen levels on cotton growth, yield and N-uptake planted in legume rotation. Pak J Bot 40(2):767–778

    CAS  Google Scholar 

  • La Favre JS, Focht DD (1983) Conservation in soil of H2 liberated from N2 fixation by H up-nodules. Appl Environ Microbiol 46:304–311

    PubMed  PubMed Central  Google Scholar 

  • Ladd JN, Amato M, Jackson RB, Butler JHA (1983) Utilization by wheat crops of nitrogen from legume residues decomposing in soils in the field. Soil Biol Biochem 15:231–238

    Article  Google Scholar 

  • Ladha JK, Peoples MB (1995) Management of biological nitrogen fixation for the development of more productive and sustainable agricultural systems. Kluwer Academic Publishers, Dordrecht, p 287

    Google Scholar 

  • Lemke RL, Zhong Z, Campbell CA, Zentner RP (2007) Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agron J 99:1719–1725

    Article  CAS  Google Scholar 

  • Li YF, Ran W, Zhang RP, Sun SB, Xu GH (2009) Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil 315:285–296

    Article  CAS  Google Scholar 

  • Luce SM, Grant CA, Zebarth BJ, Ziadi N, O’Donovan JT, Blackshaw RE (2015) Legumes can reduce economic optimum nitrogen rates and increase yields in a wheat-canola cropping sequence in western Canada. Field Crop Res 179:12–25

    Article  Google Scholar 

  • Lupwayi NZ, Kennedy AC, Chirwa RM (2010) Grain legume impacts on soil biological processes in Sub-Saharan Africa. African J Plant Sci 5:1–7

    Google Scholar 

  • Mahdhi M, Lajudie P, Mars M (2008) Phylogenetic and symbiotic characterization of rhizobial bacteria nodulating Argyrolobium uniflorum in Tunisian arid soils. Can J Microbiol 54:209–217

    Article  CAS  PubMed  Google Scholar 

  • Mayer J, Buegger FL, Jensen SE, Schloter M, Heb J (2003) Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant Soil 255:541–554

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena R, Meena SK (2013) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Biosc 8(3):931–935

    CAS  Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014a) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under western dry zone of India. Bangladesh J Bot 43(2):169–173

    Google Scholar 

  • Meena VS, Maurya BR, Meena RS, Meena SK, Singh NP, Malik VK (2014b) Microbial dynamics as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi, India. African J Microb Res 8(1):257–263

    Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015a) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015b) Influence of bioinorganic combinations on yield, quality and economics of mungbean. Am J Exp Agric 8(3):159–166

    Article  CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015d) Residual impact of well-grow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2017b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Reg. Accepted in press

    Article  CAS  Google Scholar 

  • Mitchell WH, Teel MR (2007) Winter annual cover crops for no tillage corn production. Agron J 69:569–573

    Article  Google Scholar 

  • Mubarak AR, Rosenani AB, Anuar AR, Zauyah S (2002) Decomposition and nutrient release of maize stover and groundnut haulm under tropical field conditions of Malaysia. Commun Soil Sci Plant Anal 33(3&4):609–622

    Article  CAS  Google Scholar 

  • Mugwe J, Mugendi DN, Mucheru-Muna M, Kungu J (2011) Soil inorganic N and N uptake by maize following application of legume biomass, tithonia, manure and mineral fertilizer in central Kenya. In: Bationo A (ed) Innovations as key to the Green Revolution in Africa. Springer, pp 605–612

    Chapter  Google Scholar 

  • Nair KPP, Patel UK, Singh RP, Kaushik MK (1979) Evaluation of legume intercropping in conservation of fertilizer nitrogen in maize culture. J Agric Sci 93:189–194

    Article  Google Scholar 

  • Nulik J, Dalgliesh N, Cox K, Gabb S (2013) Integrating herbaceous legumes into crop and livestock systems in eastern Indonesia. Australian Centre for International Agricultural Research (ACIAR), Canberra

    Google Scholar 

  • Osman AN, Ræbild A, Christiansen JL, Bayala J (2011) Performance of cowpea (Vigna unguiculata) and pearl millet (Pennisetum glaucum) intercropped under Parkia biglobosa in an agroforestry system in Burkina Faso. Afr J Agric Res 6(4):882–891

    Google Scholar 

  • Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA (2012) Legumes intercropped with spring barley contributes to increased biomass production and carry-over effects. J Agric Sci 150:584–594

    Article  Google Scholar 

  • Paré T, Chalifour FP, Bourassa J, Antoun H (1992) Forage-corn dry-matter yields and N uptake as affected by previous legumes and N fertilizer. Can J Plant Sci 72:699–712

    Article  Google Scholar 

  • Peix A, Velazquez E, Silva LR, Mateos PF (2010) Key molecules involved in beneficial infection process in rhizobia-legume symbiosis. In: Microbes for legume improvement. https://doi.org/10.1007/978-3-211-99753-6

    Chapter  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard NH, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Peter VM, Cassman K, Cleveland C, Crews T, Christopher BF, Grimm BN, Howarth WR, Marinov R, Martinelli L, Rastetter B, Sprent IJ (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Postgate J (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Google Scholar 

  • Ravishankara R, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 5949:123–125

    Article  CAS  Google Scholar 

  • Rees RM, Augustin J, Alberti GB, Ball C et al (2013) Nitrous oxide emissions from European agriculture an analysis of variability and drivers of emissions from field experiments. Biogeosciences 10:2671–2682

    Article  CAS  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2004) Greenhouse gases (GHGs) in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 5486:1922–1925

    Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, MacDonald JD, Bissonnette N, Bertrand N (2009) Ammonia volatilization following surface application of urea to tilled and no-till soils: a laboratory comparison. Soil Tillage Res 103:310–315

    Article  Google Scholar 

  • Ruschel AP, Döbereiner J (1965) Bactérias assimbióticas fixadoras de N na rizosfera de gramíneas forrageiras. In: Congresso Internacional de Pastagens, vol 9. São Paulo, pp 1103–1107

    Google Scholar 

  • Sawatsky N, Soper RJ (1991) A quantitative measurement of the nitrogen loss from the root system of field peas (Pisum avense L.) grown in the field. Soil Biol Biochem 23:255–259

    Article  CAS  Google Scholar 

  • Schulz S, Keatinge JDH, Wells GJ (1999) Productivity and residual effects of legumes in rice based cropping systems in a warm temperature environment. Legume biomass production and N- fixation. Field Crop Res 61:23–35

    Article  Google Scholar 

  • Schwenke GD, Herridge DF, Scheer C, Rowlings DW, Haigh BM, McMullen KG (2015) Soil N2O emissions under N2-fixing legumes and nitrogen-fertilised canola: a reappraisal of emissions factor calculations. Agric Ecosyst Environ 202:232–242

    Article  CAS  Google Scholar 

  • Seitzinger S, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  CAS  PubMed  Google Scholar 

  • Senbayram M, Wenthe C, Lingner A, Isselstein J, Steinmann H, Kaya C, Köbke S (2016) Legume-based mixed intercropping systems may lower agricultural born N2O emissions. Energy Sustain Soc 6:2

    Article  Google Scholar 

  • Sergei AM (2012) Nitrogen cycle. In: Spradley J, Elliott KD, Dutch SI, Boorstein M (eds) Earth’s weather, water, and atmosphere. EBSCO. Earth Sci, pp 347–350

    Google Scholar 

  • Seymour N, McKenzie K, Krosch S (2015) Fixing more nitrogen in pulse crops. In: Rachaputi RCN (ed) Nindigully GRDC grains research update. Department of Agriculture and Fisheries

    Google Scholar 

  • Shaha Z, Shahb SH, Peoplesc MB, Schwenked GD, Herridge DF (2003) Crop residue and fertiliser N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crop Res 83:1–11

    Article  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria, Microbes for legume improvement, vol 9. Springer, Wien, pp 195–237. https://doi.org/10.1007/978-3-211-99753-6_10

    Book  Google Scholar 

  • Skorupska A, Wielbo J, Kidaj D, Kozaczuk MM (2010) Enhancing rhizobium-legume symbiosis using signaling factors. In: Khan MS et al (eds) Microbes for legume improvement, vol 2. Springer, Wien, pp 27–54. https://doi.org/10.1007/978-3-211-99753-6_2

    Chapter  Google Scholar 

  • Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag 20:255–263

    Article  Google Scholar 

  • Sqrensen J, Sessitsch A (2007) Plant-associated bacteria lifestyle and molecular interactions. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton, pp 211–236

    Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability. Chem Biol Technol Agric 4:2. https://doi.org/10.1186/s40538-016-0085-1

    Article  Google Scholar 

  • Sulieman S, Tran LP (2015) Legume nitrogen fixation in a changing environment, achievements and challenges. www.springer.com. https://doi.org/10.1007/978-3-319-06212-9-1

  • Takle E (2008) Global warming: agriculture’s impact on greenhouse gas emission, Ag DM Newsletter Article

    Google Scholar 

  • Timothy CE (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs ecological considerations. Biogeochemistry 46:233–246

    Google Scholar 

  • Unkovich M, Herridge D, Peoples M (2008) Measuring plant-associated nitrogen fixation in agricultural systems, ACIAR Monograph No. 136

    Google Scholar 

  • Varma D, Meena RS (2016) Mungbean yield and nutrient uptake performance in response of NPK and lime levels under acid soil in Vindhyan region, India. J App Nat Sci 8(2):860–863

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Vieira RF, Mendes IC, Junior FBR, Hungria M (2010) Symbiotic nitrogen fixation in tropical food grain legumes: current status. Microbes for legume improvement Chapter 8. In: Khan MS et al (eds) Microbes for legume improvement. https://doi.org/10.1007/978-3-211-99753-6_18

    Chapter  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc B 368:20130119. https://doi.org/10.1098/rstb.2013.0119

    Article  CAS  Google Scholar 

  • Voisin AS, Guéguen J, Huyghe C, Jeuffroy MH, Magrini MB, Meynard JM (2014) Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron Sustain Dev 34:361–380

    Article  CAS  Google Scholar 

  • Weil RR, Brady NC (2017) The nature and properties of soil, 17th edn. Pearson and Prentice Hall, Upper Saddle River. ISBN:978-0133254488

    Google Scholar 

  • Yadav RL, Dwivedi BS, Pandey PS (2000) Rice-wheat cropping system: assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crop Res 65:15–30

    Article  Google Scholar 

  • Yadav SS, Hunter D, Redden B, Nang M, Yadava DK, Habibi AB (2015) Impact of climate change on agriculture production, food, and nutritional security. In: Redden R, Yadav SS, Maxted N, Dulloo MS, Guarino L, Smith P (eds) Crop wild relatives and climate change. Wiley, Hoboken, pp 1–23

    Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das, Layek J, Saha P (2017) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yano KH, Daimon H, Mimoto (1994) Effect of Sunhemp and peanut incorporated as green manure on growth and nitrogen uptake of the succeeding wheat. Jpn J Crop Sci 63(1):137–143

    Article  CAS  Google Scholar 

  • Yusuf AA, Abaidoo RC, Iwuafor ENO, Olufajo OO, Sanginga N (2009) Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. Agric Ecosyst Environ 12:325–331

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kakraliya, S.K. et al. (2018). Nitrogen and Legumes: A Meta-analysis. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for Soil Health and Sustainable Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_9

Download citation

Publish with us

Policies and ethics