Skip to main content

Endocrine-Disrupting Pollutants in Industrial Wastewater and Their Degradation and Detoxification Approaches

  • Chapter
  • First Online:
Emerging and Eco-Friendly Approaches for Waste Management

Abstract

Endocrine-disrupting chemicals (EDCs), a group of chemicals that alter the normal function of the endocrine system of humans and wildlife, are a matter of great concern. These compounds are widely distributed in respective environments such as water, wastewater, sediments, soils, and atmosphere. Chemicals like pesticides, pharmaceuticals and personal care products, flame retardants, natural hormones, heavy metals, and chemicals derived from basic compounds (such as plasticizers and catalysts) are major endocrine disruptors. EDCs emerging from industries such as pulp and paper, tannery, distillery, textile, pharma, etc. have been considered as major source of contamination. Alkylphenol ethoxylates (APEOs), bisphenol A (BPA), phthalates, chlorophenols, norethindrone, triclosan, gonadotropin compounds, pesticides, etc. are generally escaped during wastewater treatment and contaminate the environment. Endocrine-disrupting activity of these compounds is well documented to have adverse effect on human-animal health. Globally, efforts are being approached for their efficient removal from sewage/wastewaters. Thus, this chapter provides updated overview on EDC generation, characteristics, and toxicity as well as removal/degradation techniques including physical, chemical, and biological methods. This chapter also reviews the current knowledge of the potential impacts of EDCs on human health so that the effects can be known and remedies applied for the problem as soon as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe I (1999) Adsorption properties of endocrine disruptors onto activated carbon. J Water Waste 41:43–47

    CAS  Google Scholar 

  • Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Engine 128:253–260

    Article  CAS  Google Scholar 

  • Alam MZ, Ahmad S, Malik A, Ahmad M (2010) Mutagenicity and genotoxicity of tannery effluents used for irrigation at Kanpur, India. Ecotoxicol Environ Saf 73:1620–1628

    Article  CAS  Google Scholar 

  • Aly HA, Domenech O, Abdel-Naim AB (2009) Aroclor 1254 impairs spermatogenesis and induces oxidative stress in rat testicular mitochondria. Food Chem Toxicol 47:1733–1738

    Article  CAS  Google Scholar 

  • Andersen HR, Andersson AM, Arnold SF et al (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect 107:89–108

    Article  CAS  Google Scholar 

  • Aneck-Hahn NH, Schulenburg GW, Bornman MS, Farias P, de Jager C (2007) Impaired semen quality associated with environmental DDT exposure in young men living in a malaria area in the Limpopo Province, South Africa. J Androl 28:423–434

    Article  CAS  Google Scholar 

  • Asada T, Oikawa K, Kawata K, Ishihara S, Iyobe T (2004) Study of removal effect of bisphenol-A and β-estradiol by porous carbon. J Health Sci 50:588–593

    Article  CAS  Google Scholar 

  • Bajt O, Mailhot G, Bolte M (2001) Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe(III) in aqueous solution. Appl Catal B 33:239–248

    Article  CAS  Google Scholar 

  • Barse AV, Chakrabarti T, Ghosh TK, Pal AK, Jadhao SB (2007) Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate. Pestic Biochem Physiol 88:36–42

    Article  CAS  Google Scholar 

  • Berge′ A, Cladie′re M, Gasperi J, Coursimault A, Tassin B, Moilleron R (2012) Meta-analysis of environmental contamination by alkylphenol. Environ Sci Pollut Res 19:3798–3819

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R (2010a) Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegradation J 21:703–711

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R (2010b) Effect of bacteria treated and untreated post-methanated distillery effluent (PMDE) on seed germination, seedling growth and amylase activity in Phaseolus mungo L. J Hazard Mater 180:730–734

    Article  CAS  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2009) Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery wastewater. World J Microbiol Biotechnol 25:737–744

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017a) Bioremediation: an eco-sustainable green technology, it’s applications and limitations. Bharagava RN Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group Boca Raton 9781138628892

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017b) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol 14:1–14. https://doi.org/10.1007/s00244-017-0490-x

    Article  CAS  Google Scholar 

  • Bila D, Montalvão AF, Azevedo DA, Dezotti M (2007) Estrogenic activity removal of 17β-estradiol by ozonation and identification of by-products. Chemosphere 69:736–746

    Article  CAS  Google Scholar 

  • Bodzek M (2015) Application of membrane techniques for the removal of micropollutants from water and wastewater. Copernican Lett 6:24–33

    Article  Google Scholar 

  • Bodzek M, Dudziak M (2006) Elimination of steroidal sex hormones by conventional water treatment and membrane processes. Desalination 198:24–32

    Article  CAS  Google Scholar 

  • Bodzek M, Możliwości P (2013) wykorzystania technik membranowych w usuwaniu mikroorganizmów i zanieczyszczeń organicznych ze środowiska. Inżynieria Ochrona Środowiska 16:5–37

    CAS  Google Scholar 

  • Bodzek M, Dudziak M, Luks–Betlej K (2004) Application of membrane techniques to water purification. Removal of phthalates. Desalination 162:121–128

    Article  CAS  Google Scholar 

  • Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239:229–246

    Article  CAS  Google Scholar 

  • Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N (1995) Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect 103:608–612

    Article  CAS  Google Scholar 

  • Cases V, Argandona AV, Rodriguez M, Prats D (2011) Endocrine disrupting compounds: a comparison of removal between conventional activated sludge and membrane reactors. Desalination 272:240–245

    Article  CAS  Google Scholar 

  • Castellana G, Loffredo E (2014) Water Air Soil Pollut 225:1872. https://doi.org/10.1007/s11270-014-1872-6

    Article  CAS  Google Scholar 

  • Chandra R, Kumar V (2017) Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in situ bioremediation of post-methanated distillery sludge. Front Microbiol 8:887

    Article  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit JH (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2012) Characterization of Phragmites cummunis rhizosphere bacterial communities and metabolic products during the two stage sequential treatment of post methanated distillery effluent by bacteria and wetland plants. Bioresour Technol 103:78–86

    Article  CAS  Google Scholar 

  • Chang H, Wan Y, Wu S, Fan Z, Hu J (2011) Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens. Water Res 45:732–740

    Article  CAS  Google Scholar 

  • Chen J, Li X, Li J et al (2007) Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y. Appl Microbiol Biotechnol 74:676

    Article  CAS  Google Scholar 

  • Choi KJ, Kim SG, Kim CW, Kim SH (2005) Effects of activated carbon types and service life on the re-moval of endocrine disrupting chemicals: amitrol, nonylphenol and bisphenol-A. Chemosphere 58:1535–1545

    Article  CAS  Google Scholar 

  • Chowdhary P, Yadav A, Kaithwas G, Bharagava R N (2017) Distillery wastewater: a major source of environmental pollution and it’s biological treatment for environmental safety. Singh R & Kumar S, Green technology and environmental sustainability. Springer International, Cham 978-3-319-50653-1

    Google Scholar 

  • Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere 194:229–246

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807

    Article  CAS  Google Scholar 

  • Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, Patel YM (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106(Suppl. 1):11–56

    Article  CAS  Google Scholar 

  • Danzl E, Sei K, Soda S, Ike M, Fujita M (2009) Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int J Environ Res Public Health 6:1472–1484

    Article  CAS  Google Scholar 

  • De Gusseme B, Pycke B, Hennebel T, Marcoen A, Vlaeminck SE, Noppe H et al (2009) Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res 43:2493–2503

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342

    Article  CAS  Google Scholar 

  • Duty SM, Singh NP, Silva MJ et al (2003) The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 111:1164–1169

    Article  CAS  Google Scholar 

  • Eriksson P, Jakobsson E, Fredriksson A (1998) Developmental neurotoxicity of brominated flame retardants, polybrominated diphenyl ethers and tetrabromo-bis-phenol A. Organohalogen Compd 35:375

    CAS  Google Scholar 

  • Eskinazi B, Mocarelli P, Warner M, Chee WY, Gerthoux PM, Samuels S, Needham LL, Patterson Jr DG (2003) Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect 111:947–953

    Article  CAS  Google Scholar 

  • Falconer IR, Chapman HF, Moore MR, Ranmuthugala G (2006) Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ Toxicol 21:181–191

    Article  CAS  Google Scholar 

  • Federle TW, Kaiser SK, Nuck BA (2002) Fate and effects of triclosan in activated sludge. Environ Toxicol Chem 21:1330–1337

    Article  CAS  Google Scholar 

  • Fent K (2015) Progestins as endocrine disrupters in aquatic ecosystems: concentrations, effects and risk assessment. Environ Int 84:115–130

    Article  CAS  Google Scholar 

  • Fujii K, Kikuchi S, Satomi M, Ushio-Sata N, Morita N (2002) Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl Environ Microbiol 68:2057–2060

    Article  CAS  Google Scholar 

  • Fukuhara T, Iwasaki S, Kawashima M, Shinohara O, Abe I (2006) Adsorbability of estrone and 17β -estradiol in water onto activated carbon. Water Res 40:241–248

    Article  CAS  Google Scholar 

  • Gallenkemper M, Wintgens T, Melin T (2003) Nanofiltration of endocrine disrupting compounds. Membr Drinking Ind Water Prod 3:321–327

    CAS  Google Scholar 

  • Gultekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manag 85:816–832

    Article  CAS  Google Scholar 

  • Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013

    Article  CAS  Google Scholar 

  • Hardell L, Andersson SO, Carlberg M, Bohr L, van Bavel B, Lindstorm G et al (2006) Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer. J Occup Environ Med 48:700–707

    Article  CAS  Google Scholar 

  • Harries JE, Runnalls T, Hill E et al (2000) Development of a reproductive performance test for endocrine disrupting chemicals using pair-breeding fathead minnows (Pimephales promelas). Environ Sci Technol 34:3003–3011

    Article  CAS  Google Scholar 

  • Hauser R, Meeker JD, Singh NP et al (2007) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 22:688–695

    Article  CAS  Google Scholar 

  • Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, Foster PM, Gray CL, Gray LE (2008) Fifteen years after “wingspread” environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105:235–259

    Article  CAS  Google Scholar 

  • Høyer AE, Grandlean P, Jørgensen T, Brock JW, Hartvig HB (1998) Organochlorine exposure and risk of breast cancer. Lancet 352:1816–1820

    Article  Google Scholar 

  • Hu J, Chen S, Aizawa T, Terao Y, Kunikane S (2003) Products of aqueous chlorination of 17β-estradiol and their estrogenic activities. Environ Sci Technol 37:5665–5670

    Article  CAS  Google Scholar 

  • Huber MM, Ternes TA, Gunten UV (2004) Removal of estrogenic activity and formation of oxidation products during ozonation of 17a-ethinylestradiol. Environ Sci Technol 38:177–5186

    Article  CAS  Google Scholar 

  • Husain Q, Qayyum S (2012) Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: a review. Crit Rev Biotechnol 3:260–292

    Google Scholar 

  • Ifelebuegu AO (2011) The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes. Int J Environ Sci Technol 8:245–254

    Article  CAS  Google Scholar 

  • Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. New Eng J Med 335:783

    Article  CAS  Google Scholar 

  • Janex-Habibi ML, Huyard A, Esperanza M, Bruchet A (2009) Reduction of endocrine disruptor emissions in the environment: the benefit of wastewater treatment. Water Res 43:1565–1576

    Article  CAS  Google Scholar 

  • Jiang JQ, Yin Q, Zhou JL, Pearce P (2005) Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere 61:544–550

    Article  CAS  Google Scholar 

  • Jing Y, Li LS, Zhang QY, Lu PP, Liu H, Lu XH (2011) Photocatalytic ozonation of dimethyl phthalate with TiO2 prepared by a hydrothermal method. J Hazard Mater 189:40–47

    Article  CAS  Google Scholar 

  • Jobling S, Casey D, Rogers-Gray T, Oehlmann J, Schulte-Oehlmann U, Pawlowski S, Baunbeck T, Turner AP, Tyler CR (2004) Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquat Toxicol 66:207–222

    Article  CAS  Google Scholar 

  • Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35:4697–4703

    Article  CAS  Google Scholar 

  • Kanda R, Griffin P, James HA, Fothergill J (2003) Pharmaceutical and personal care products in sewage treatment works. J Environ Monit 5:823–830

    Article  CAS  Google Scholar 

  • Kang JH, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226:79–89

    Article  CAS  Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104:8897–8901

    Article  CAS  Google Scholar 

  • Kidd KA, Becher G, Bergman A, Muir DCG, Woodruff TJ (2012) Human and wildlife exposures to EDC’s; Chapter 3; State of the science of endocrine disrupting chemicals. UNEP, Geneva, pp 189–250

    Google Scholar 

  • Kobayashi K, Miyagawa M, Wang RS, Suda M, Sekiguchi S, Honma T (2005) Effects of in utero and lactational exposure to bisphenol a on thyroid status in F1 rat offspring. Ind Health 43:685–690

    Article  CAS  Google Scholar 

  • Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MA, Van der Paauw CG, Tuinstra LG, Sauer PJ (1996) Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants’ mental and psychomotor development. Pediatrics 97:700–706

    CAS  Google Scholar 

  • Kumar V, Majumdar C, Roy P (2008) Effects of endocrine disrupting chemicals from leather industry effluents on male reproductive system. J Steroid Biochem Mol Biol 111:208–216

    Article  CAS  Google Scholar 

  • Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag 183:204–211

    Article  CAS  Google Scholar 

  • Kunde L, Weiping L, Gan J (2009) Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways. Environ Sci Technol 43:3860–3864

    Article  CAS  Google Scholar 

  • Latorre A, Lacorte S, Barcel′o D (2003) Presence of nonylphenol, octyphenol and bisphenol a in two aquifers close to agricultural, industrial and urban areas. Chromatographia 57:111–116

    Article  CAS  Google Scholar 

  • Laws SC, Carey SA, Ferrell JM, Bodman GJ, Cooper RL (2000) Estrogenic activity of octylphenol, nonylphenol, bisphenol A andmethoxychlor in rats. Toxicol Sci 54:154–167

    Article  CAS  Google Scholar 

  • Lee Y, Yoon J, Von Gunten U (2005) Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe (VI)). Environ Sci Technol 39:8978–8984

    Article  CAS  Google Scholar 

  • Li HQ, Jiku F, Schroder HF (2000) Assessment of the pollutant elimination efficiency by gas chromatography/mass spectrometry, liquid chromatography–mass spectrometry and tandem mass spectrometry-comparison of conventional and membrane-assisted biological wastewater treatment processes. J Chromatogr 889:155–176

    Article  CAS  Google Scholar 

  • Liu ZH, Kanjo Y, Mizutami S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748

    Article  CAS  Google Scholar 

  • Liu J, Wang R, Huang B, Lin C, Wang Y, Pan X (2011) Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environ Pollut 159:2815–2822

    Article  CAS  Google Scholar 

  • Macellaro G, Pezzella C, Cicatiello P, Sannia G, Piscitelli A (2014) Fungal laccases degradation of endocrine disrupting compounds. Bio Med Res Int 2014:614038

    Google Scholar 

  • MacLusky NJ, Hajszan T, Leranth C (2005) The environmental estrogen bisphenol A inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspec 113:675–679

    Article  CAS  Google Scholar 

  • Madsen PB, Johansen NH, Andersen HR, Kaas P (2006) Removal of endocrine disruptors and pathogens. Advanced photo oxidation processes at Hørsholm WWTP. Presented at the IWA World Water Congress, Beijing, China

    Google Scholar 

  • Markey CM, Rubin BS, Soto AM, Sonnenschein C (2003) Endocrine disruptors: from wingspread to environmental developmental biology. J Steroid Biochem Mol Biol 83:235–244

    Article  CAS  Google Scholar 

  • Matsui Y, Knappe DRU, Iwaki K, Ohira H (2002) Pesticide adsorption by granular activated carbon adsorbers 2. Effects of pesticide and natural organic matter characteristics on pesticide breakthrough curves. Environ Sci Technol 36:3432–3438

    Article  CAS  Google Scholar 

  • Mavrov V, Nikolov ND, Islam MA, Nikolova JD (1992) An investigation on the configuration of inserts in tubular ultrafiltration module to control concentration polarization. J Membr Sci 75:197–201

    Article  CAS  Google Scholar 

  • McGlynn KA, Quraishi SM, Graubard BI, Weber JP, Rubertone MV, Erickson RL (2008) Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst 100:663–671

    Article  CAS  Google Scholar 

  • Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY (2010) Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge-fate of bisphenol A. Chemosphere 78:923–941

    Article  CAS  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  • Nadzialek S, Vanparys C, Van der Heiden E, Michaux C, Brose F, Scippo ML, De Coen W, Kestemont P (2010) Understanding the gap between the estrogenicity of an effluent and its real impact into the wild. Sci Total Environ 408:812–821

    Article  CAS  Google Scholar 

  • Nakamura H, Shiozawa T, Terao Y, Shiraishi F, Fukazawa H (2006) By-products produced by the reaction of estrogens with hypochlorous acid and their estrogen activities. J Health Sci 52:124–131

    Article  CAS  Google Scholar 

  • Nykova N, Muller TG, Gyllenberg M, Timmer J (2002) Quantitative analyses of anaerobic wastewater treatment processes: identifiability and parameter estimation. Biotechnol Bioeng 78:89–103

    Article  CAS  Google Scholar 

  • Olujimi OO, Fatoki O, Odendaal SJP, Okonkwo JO (2010) Endocrine disrupting chemicals (phenol and phthalates) in the South African environment: a need for more monitoring. Water SA 36:671–682

    Article  CAS  Google Scholar 

  • Patnaik P (2007) A comprehensive guide to the hazardous properties of chemical substances.3rd edn. Wiley Interscience, Hoboken

    Book  Google Scholar 

  • Pedersen SN, Christiansen LB, Pedersen KL, Korsgaard B, Bjerregaard P (1999) In vivo estrogenic activity of branched and linear alkylphenols in rainbow trout (Oncorhynchus mykiss). Sci Total Environ 233:89–96

    Article  CAS  Google Scholar 

  • Petruzzelli D, Boghetich G, Petrella M, Dell’Erba AL, Abbate P, Sanarica S (2007) Advanced oxidation as a pretreatment of industrial landfill leachate. Global NEST J 9:51–56

    Google Scholar 

  • Pezzella C, Macellaro G, Sannia G, Raganati F, Olivieri G, Marzocchella A, Schlosser D, Piscitelli A (2017) Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors. PLoS One 12:e0178758

    Article  CAS  Google Scholar 

  • Polyzos SA, Kountouras J, Deretzi G, Zavos C, Mantzoros CS (2012) The emerging role of endocrine disruptors in pathogenesis of insulin resistant: a concept implicating nonalcoholic fatty liver disease. Cur Mol Med 12:68–82

    Article  CAS  Google Scholar 

  • Qhanya Lehlohonolo B et al (2017) Isolation and characterisation of endocrine disruptor nonylphenol-using bacteria from South Africa. S Afr J Sci 113:1–7

    Google Scholar 

  • Rignell-Hydbom A, Rylander L, Giwercman A, Jönsson BAG, Nilsson-Ehle P, Hagmar L (2004) Exposure to CB-153 and p, p0-DDE and male reproductive function. Hum Reprod 19:2066–2075

    Article  CAS  Google Scholar 

  • Ritchie JM, Vial SL, Fuortes LJ, Robertson LW, Guo H, Reedy VE et al (2005) Comparison of proposed frameworks for grouping polychlorinated biphenyl congener data applied to a case-control pilot study of prostate cancer. Environ Res 98:104–113

    Article  CAS  Google Scholar 

  • Roh H, Subramanya N, Zhao F, Yu CP, Sandt J, Chu KH (2009) Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 77:1084–1089

    Article  CAS  Google Scholar 

  • Samaras VG, Stasinakis AS, Mamais D, Thomaidis NS, Lekkas TD (2013) Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. J Hazard Mater 244:259–267

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2017). Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches, Bharagava RN Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton 9781138628892

    Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2017) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69

    CAS  Google Scholar 

  • Sei K, Takeda T, Soda SO, Fujita M, Ike M (2007) Removal characteristics of endocrine-disrupting chemicals by laccase from white-rot fungi. J Environ Sci Health A 43:53–60

    Article  CAS  Google Scholar 

  • Singer H, Muller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    Article  CAS  Google Scholar 

  • Snyder S, Westerhoff P, Song R, Levine B, Long B (2011) American Water Works Association Research Foundation (AWWARF) Project #2758: Evaluation of conventional and advanced treatment processes to remove endocrine disruptors and pharmaceutically active compounds. http://enpub.fulton.asu.edu/pwest/awwarf_project_EDC.htm

  • Snydera SA, Adhamb S, Reddingc AM, Cannonc FS, DeCarolisb J, Oppenheimerb J, Werta EC, Yoond Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202:156–181

    Article  CAS  Google Scholar 

  • Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158:327–339

    Article  CAS  Google Scholar 

  • Spencer AL, Bonnema R, McNamara MC (2009) Helping women choose appropriate hormonal contraception: update on risks, benefits, and indications. Am J Med 122:497–506

    Article  Google Scholar 

  • Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  • Staples CA, Woodburn KN, Hall AT, Klecka GM (2002) A weight of evidence approach to the aquatic hazard assessment of bisphenol A. Human Ecol Risk Assess 8:1083–1105

    Article  Google Scholar 

  • Thompson A, Griffin P, Stuetz R, Cartmell E (2005) The fate and removal of triclosan during wastewater treatment. Water Environ Res 77:63–67

    Article  CAS  Google Scholar 

  • Tilson HA, Kodavanti PR (1997) Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicology 18:727–743

    CAS  Google Scholar 

  • Toft G, Rignell-Hydbom A, Tyrkiel E, Shvets M, Giwercman A, Lindh CH et al (2006) Semen quality and exposure to persistent organochlorine pollutants. Epidemiology 17:450–458

    Article  Google Scholar 

  • Toyama T, Ojima T, Tanaka Y, Mori K, Morikawa M (2013) Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis-rhizosphere bacteria association. Water Sci Technol 68:522–529

    Article  CAS  Google Scholar 

  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocrinol Rev 30:75–95

    Article  CAS  Google Scholar 

  • Villemur R, dos Santos SCC, Ouellette J, Juteau P, Lepine F, Deziel E (2013) Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl Environ Microbiol 79:4701–4711

    Article  CAS  Google Scholar 

  • Von Gunten U (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37:1443–1467

    Article  CAS  Google Scholar 

  • Voutsa et al (2006) Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ Sci Pollut Res 13:333–341

    Article  CAS  Google Scholar 

  • Walha K, Amar RB, Firdaous L, Quem′eneur F, Jaouen P (2007) Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination 207:95–106

    Article  CAS  Google Scholar 

  • Weber S, Leuschner P, Kampfer P, Dott W, Hollender J (2005) Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 67:106–112

    Article  CAS  Google Scholar 

  • Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663

    Article  CAS  Google Scholar 

  • Wintgens T, Gallenkemper M, Melin T (2002) Endocrine disrupter removal from wastewater using membrane bioreactor and nanofiltration technology. Desalination 146:387–391

    Article  CAS  Google Scholar 

  • Witorsch RJ (2002) Endocrine disruptors: can biological effects and environmental risks be predicted? Regul Toxicol Pharmacol 36:118–130

    Article  CAS  Google Scholar 

  • Yadav A, Mishra S, Kaithwas G, Raj A, Bharagava RN (2016) Organic pollutants and pathogenic bacteria in tannery wastewater and their removal strategies. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press (India) Pvt. Ltd., New Delhi, 2015, pp 101–127

    Google Scholar 

  • Yang YY, Wang Z, Xie SG (2014) Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change. Sci Total Environ 470:1184–1188

    Article  CAS  Google Scholar 

  • Ying GG, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ Int 33:199–205

    Article  CAS  Google Scholar 

  • Ying GG, Williams B, Kookana R (2002) Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environ Int 28:215–226

    Article  CAS  Google Scholar 

  • Yoshihara S, Murugananthan M (2009) Decomposition of various endocrine-disrupting chemicals at boron-doped diamond electrode. Electrochim Acta 54:2031–2038

    Article  CAS  Google Scholar 

  • Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H, Omura H (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70:5283–5289

    Article  CAS  Google Scholar 

  • Yu CP, Roh H, Chu KH (2007) 17β-estradiol-degrading bacteria isolated from activated sludge. Environ Sci Technol 41:486–492

    Article  CAS  Google Scholar 

  • Zacharewski TR, Meek MD, Clemons JH, Wu ZF, Fielden MR, Matthews JB (1998) Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. Toxicol Sci 46:282–293

    CAS  Google Scholar 

  • Zeng F, Liu W, Jiang H, Yu HQ, Zeng RJ, Guo Q (2011) Separation of phthalate esters from bio-oil derived from rice husk by a basification-acidification process and column chromatography. Bioresour Technol 102:1982–1987

    Article  CAS  Google Scholar 

  • Zhang WW, Yin K, Chen LX (2013) Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol 97:5681–5689

    Article  CAS  Google Scholar 

  • Zhang C, Li Y, Wang C, Niu L, Cai W (2015) Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review. Crit Rev Environ Sci Technol 46:1–59

    Article  CAS  Google Scholar 

  • Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC et al (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45:785–796

    Article  CAS  Google Scholar 

  • Zoeller RT, Bansal R, Parris C (2005) Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146:607–612

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the director of CSIR-IITR, Lucknow (India), for his encouragement and support. We greatly acknowledge the Department of Biotechnology (DBT), Government of India, New Delhi, for the funding (Grant No.BT/PR20460/BCE/8/1386/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haq, I., Raj, A. (2019). Endocrine-Disrupting Pollutants in Industrial Wastewater and Their Degradation and Detoxification Approaches. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_7

Download citation

Publish with us

Policies and ethics