Skip to main content

Effectiveness of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Chromium Stressed Soils

  • Chapter
  • First Online:
Waste Bioremediation

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Chromium pollution is increasing ceaselessly due to unending industrialization. Of the various oxidation states, Cr6+ is highly detrimental due to its mutagenic and carcinogenic nature. Lack of effectiveness of various conventional methods due to economic and technical constraints resulted in a search for an eco-friendly and cost-effective biological techniques for Cr6+ removal from the soil. Phytoremediation came up as an innovative technique to address the problem. However, the effectiveness of phytoremediation process is greatly hindered in high metal contamination environments. Recently, microbial-mediated plant stress improvement has occurred as a major element of metal stress management in plants, and their role in enhancing plant growth and improving phytoremediation process has been well studied. The inoculation of plants with metal-resistant plant growth-promoting rhizobacteria (PGPR) plays an important role in enhancing the efficiency of heavy metal phytoremediation. PGPR improves the plant growth through innumerable mechanisms, such as production of siderophores, solubilization of mineral nutrients, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and phytohormone production. These microbes transform heavy metals into soluble and bioavailable forms, hence facilitates metal removal through phytoremediation. Correspondingly, application of plant growth-promoting bacteria exhibiting Cr6+ reduction potential when used as an inoculant with phytoremediation plant may result in improved plant growth and chromium remediation efficiency. This chapter focuses on the Cr6+ remediation potential of PGPR through metal–microbe–plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microbiol Biotechnol 7:196–208

    Article  Google Scholar 

  • Ahemad M (2014) Bacterial mechanisms for Cr (VI) resistance and reduction: an overview and recent advances. Folia Microbiol 59:321–332

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. Biotech 5:111–121. https://doi.org/10.1007/s13205-014-0206-0

  • Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–21

    Article  Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Factors affecting the variation of microbial communities in different agro-ecosystems. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 301–324

    Chapter  Google Scholar 

  • Alam MZ, Ahmad S (2012) Toxic chromate reduction by resistant and sensitive bacteria isolated from tannery effluent contaminated soil. Ann Microbiol 62:113–121

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-Concepts and applications. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.01.075

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. https://doi.org/10.1016/j.tibtech.2007.05.005

    Article  CAS  Google Scholar 

  • Banik S, Das K, Islam M, Salimullah M (2014) Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Biomed Eng 2:1035–1043

    Google Scholar 

  • Baral A, Engelken R, Stephens W, Farris J, Hannigan R (2006) Evaluation of aquatic toxicities of chromium and chromium containing effluents in reference to chromium electroplating industries. Arch Environ Contam Toxicol 50:496–502

    Article  CAS  Google Scholar 

  • Bharti RP, Shrivastava A, Soni N, Tiwari A et al (2014) Phytoremediation of heavy metal toxicity and role of soil in rhizobacteria. Int J Sci Res Publ 4:1–5

    Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr and Pb contaminated soils by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    Article  Google Scholar 

  • Cary EE (1982) Chromium in air, soils, and natural waters. In: Langard S (ed) Biological and environmental aspects of chromium, pp 49–63. Elsevier Biomedical, New York, NY, USA

    Google Scholar 

  • Cervantes C, García JC, Devars S et al (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JFEA (ed) Land Treatment of Hazardous Wastes. Noyes Data Corp., Park Ridge, NJ, pp 50–76

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by hexavalent chromium reducing bacterial strain, Cellulosimicrobiumcellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    Article  CAS  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation—focusing on accumulator plants that remediate metal contaminated soils. Aus J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chirwa EMN, Molokwane PE (2011) Biological Cr(VI) reduction: microbial diversity, kinetics and biotechnological solutions to pollution. In: Sofo DA (ed) Biodiversity. InTech. Available from: http://www.intechopen.com/books/biodiversity/biological-cr-vireductionmicrobialdiversity-kinetics-andbiotechnologicalsolutions-to-pollution

  • Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212. https://doi.org/10.3390/su7022189, https://doi.org/10.1016/j.jhazmat.2009.04.132

  • Duckworth OW, Akafia MM, Andrews MY, Bargar JR (2014) Siderophore-promoted dissolution of chromium from hydroxide minerals. Environ Sci Processes Impacts 16:1348–1359

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2005) Growth improvement of sunflower seedlings by Cr (VI) resistant bacteria. Iranian J Biotechnol 3:114–120

    CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiate plants. Lett Appl Microbiol 43:461–466

    Article  CAS  Google Scholar 

  • Fu S, Wei J, Chen H, Liu Y, Lu H, Chou J (2015) Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav. https://doi.org/10.1080/15592324.2015.1048052

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  Google Scholar 

  • Hemambika B, Balasubramanian V, Kannan VR, James RA (2013) Screening of chromium-resistant bacteria for plant growth-promoting activities. Soil Sediment Contamination Int J 22:717–736

    Article  CAS  Google Scholar 

  • Hossner LR (1996) Phytoaccumulation of selected heavy metals, uranium, and plutonium in plant systems. Quarterly Progress Report, Texas A&M University: College Station, TX, Project UTA96–0043

    Google Scholar 

  • Karuppiah P, Rajaram S (2011) Exploring the potential of chromium reducing Bacillus sp. and there plant growth promoting activities. J Microbiol Res 1:17–23

    Article  Google Scholar 

  • Kumar A (2016) Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. Int J Adv Res 4:116–124. https://doi.org/10.21474/IJAR01

    Article  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plat growth promoting bacteria in ameliorating fly ash to the growth of Brassica Juncea. J Hazard Mater 170:51–57

    Article  CAS  Google Scholar 

  • Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5:375–388. https://doi.org/10.4236/oje.2015.58031

    Article  Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371. https://doi.org/10.1128/AEM.711.5.23652371.2005

    Article  CAS  Google Scholar 

  • Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour Technol 97:957–960. https://doi.org/10.1016/j.biortech.2005.02.017

    Article  CAS  Google Scholar 

  • Liu DH, Jaing WS, Li MX (1993) Effect of chromium on root growth and cell division of Allium cepa. Israel J Plant Sci 42:235–243

    Article  Google Scholar 

  • Maqbool Z, Asghar HN, Shahzad T, Hussain S, Riaz W, Ali S, Arif MS, Maqsood M (2014) Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Ecotoxicol Environ Safety. https://doi.org/10.1016/j.ecoenv.2014.07.007

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • Morel MA, Ubalde MC, Brana V, Castro-Sowinski (2011) Delftia sp. JD2: a potential Cr (VI) reducing agent with plant growth promoting activity. Arch Microbiol 193:63–68

    Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. https://doi.org/10.3389/flps.2016.00303

    Article  Google Scholar 

  • Oh K, Cao T, Li T, Cheng H (2014) Study on application of phytoremediation technology in management and remediation of contaminated soils. J Clean Energy Technol 2:216–220

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhances chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83. https://doi.org/10.1007/s10529-007-9515-2

    Article  CAS  Google Scholar 

  • Paiva LB, de Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitória AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exper Bot 65:403–409

    Article  CAS  Google Scholar 

  • Panda SK (2003) Heavy metal phytotoxicity induces oxidative stress in Taxithelium sp. Curr Sci 84:631–633

    CAS  Google Scholar 

  • Panda SK, Choudhary S (2005) Chromium stress in plants. Brazilian J Plant Physiol. https://doi.org/10.1590/S1677-04202005000100008

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol. https://doi.org/10.1111/j.1472-765X.2009.02642.x

  • Patten CL, Blakney AJC, Coulson TJD (2013) Activity, distribution and functions of indole-3-acetic acid biosynthesis pathways in bacteria. Crit Rev Microbiol 39:395–415. https://doi.org/10.3109/1040841X.2012.716819

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2009.12.002

    Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH (2005) Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Curr Microbiol 50:266–271

    Article  CAS  Google Scholar 

  • Rathi M, Gaur N (2016) Phosphate solubilizing bacteria as biofertilizer and its applications. J Pharm Res 10:146–148

    Google Scholar 

  • Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37:27–35

    CAS  Google Scholar 

  • Ryan MP, Williams DE, Chater RJ, Hutton BM, McPhail DS (2002) Why stainless steel corrodes. Nature 415:770–774

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132:209–214

    Article  CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Kalra A (2014) In vitro Cr (VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut Res Int 21:1971–1979

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exper Bot 117:28–40

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land: a review. Enviro Chem Letters 8:1–17

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267. https://doi.org/10.1016/j.fct.2010.08.035

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Chromium reduction plant-growth promoting potentials and metal solubilization by Bacillus sp. Isolated from Alluvial Soil Curr Microbiol 54:237–243

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium reducing and plant-growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    Article  CAS  Google Scholar 

  • Yang J, He M, Wang G (2009) Removal of toxic chromate using free and immobilized Cr (VI)-reducing bacterial cells of Intrasporangium sp. Q5-1. World J Microbiol Biotechnol 25:1579–1587

    Article  CAS  Google Scholar 

  • Zayed AM, Terry M (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P., Rani, R., Chandra, A., Varjani, S.J., Kumar, V. (2018). Effectiveness of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Chromium Stressed Soils. In: Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z. (eds) Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7413-4_16

Download citation

Publish with us

Policies and ethics