Skip to main content

Chemistry to Technology of Gasification Process: A Close Look into Reactions and Kinetic Models

  • Chapter
  • First Online:
Handbook of Waste Biorefinery

Abstract

Biomass gasification is a thermochemical conversion process in which diversified solid organic wastes produce majorly gaseous products (syngas) and tarry residue. The availability of sufficient quantities of biomass and effective utilization of municipal solid wastes make biogasification a very important technique. Major focus of gasification technology is to maximize syngas production as it can directly be used for power generation or be utilized as potential feedstock for other chemicals and biofuel production. In this chapter insights into process chemistry of gasification and its key operating conditions are majorly discussed along with various types of available bio-gasifiers. Present-day challenges for the gasification technology are highlighted along with a thoughtful insight to its sustainable growth potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdoulmoumine N, Adhikari S, Kulkarni A, Chattanathan S (2015) A review on biomass gasification syngas cleanup. Appl Energy 155:294–307

    Article  Google Scholar 

  • Asadullah M (2014) Barriers of commercial power generation using biomass gasification gas: a review. Renew Sust Energ Rev 29:201–215

    Article  Google Scholar 

  • Babu BV, Sheth PN (2006) Modeling and simulation of reduction zone of downdraft biomass gasifier: effect of char reactivity factor. Energy Convers Manag 47(15–16):2602–2611

    Article  Google Scholar 

  • Badgujar KC, Bhanage BM (2018) Dedicated and waste feedstocks for biorefinery: an approach to develop a sustainable society. In: Waste biorefinery. Elsevier, pp 3–38

    Chapter  Google Scholar 

  • Baláš M, Lisý M, Å telcl O (2012) The effect of temperature on the gasification process. Acta Polytechnica 52(4):7–11

    Article  Google Scholar 

  • Barman NS, Ghosh S, De S (2012) Gasification of biomass in a fixed bed downdraft gasifier–a realistic model including tar. Bioresour Technol 107:505–511

    Article  Google Scholar 

  • Bhavanam A, Sastry RC (2013) Modelling of solid waste gasification process for synthesis gas production. ISCAIR-CSIR

    Google Scholar 

  • Blasi C (2000) Dynamic behaviour of stratified downdraft gasifiers. Chem Eng Sci 55(15):2931–2944

    Article  Google Scholar 

  • Brar JS, Singh K, Wang J, Kumar S (2012) Cogasification of coal and biomass: a review. Int J For Res 2012:363058

    Google Scholar 

  • Calì G, Deiana P, Bassano C, Meloni S, Maggio E, Mascia M, Pettinau A (2020) Syngas production, clean-up and wastewater management in a demo-scale fixed-bed updraft biomass gasification unit. Energies 13(10):2594

    Article  Google Scholar 

  • Chen JS (1987) Kinetic engineering modelling of co-current moving bed gasification reactors for carbonaceous material. PhD thesis, Cornell University, New York

    Google Scholar 

  • Chern SM, Walawender WP, Fan LT (1991) Equilibrium modeling of a downdraft gasifier I—overall gasifier. Chem Eng Commun 108(1):243–265

    Article  Google Scholar 

  • Chhiti Y, Kemiha M (2013) Thermal conversion of biomass, pyrolysis and gasification. Int J Eng Sci (IJES) 2(3):75–85

    Google Scholar 

  • Chiang KY, Chien KL, Lu CH (2012) Characterization and comparison of biomass produced from various sources: suggestions for selection of pretreatment technologies in biomass-to-energy. Appl Energy 100:164–171

    Article  Google Scholar 

  • Chojnacki J, Najser J, Rokosz K, Peer V, Kielar J, Berner B (2020) Syngas composition: gasification of wood pellet with water steam through a reactor with continuous biomass feed system. Energies 13(17):4376

    Article  Google Scholar 

  • Dantas GA, Legey LF, Mazzone A (2013) Energy from sugarcane bagasse in Brazil: an assessment of the productivity and cost of different technological routes. Renew Sust Energ Rev 21:356–364

    Article  Google Scholar 

  • Dayton DC, Foust TD (2019) Analytical methods for biomass characterization and conversion. Elsevier

    Google Scholar 

  • De Filippis P, Scarsella M, De Caprariis B, Uccellari R (2015) Biomass gasification plant and syngas clean-up system. Energy Procedia 75:240–245

    Article  Google Scholar 

  • Di Blasi C, Branca C (2013) Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel 104:847–860

    Article  Google Scholar 

  • Edrich R, Bradley T, Graboski MS (1985) The gasification of ponderosa pine charcoal. In: Fundamentals of thermochemical biomass conversion. Springer, Dordrecht, pp 557–566

    Chapter  Google Scholar 

  • Giltrap DL, McKibbin R, Barnes GRG (2003) A steady state model of gas-char reactions in a downdraft biomass gasifier. Sol Energy 74(1):85–91

    Article  Google Scholar 

  • Gordillo ED, Belghit A (2011) A downdraft high temperature steam-only solar gasifier of biomass char: a modelling study. Biomass Bioenergy 35(5):2034–2043

    Article  Google Scholar 

  • Guo LJ, Lu YJ, Zhang XM, Ji CM, Guan Y, Pei AX (2007) Hydrogen production by biomass gasification in supercritical water: a systematic experimental and analytical study. Catal Today 129(3-4):275–286

    Article  Google Scholar 

  • Gupta AK, Cichonski W (2007) Ultra-high temperature steam gasification of biomass and solid wastes. Environ Eng Sci 24(8):1179–1189

    Article  Google Scholar 

  • Jarungthammachote S, Dutta A (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 32(9):1660–1669

    Article  Google Scholar 

  • Jarungthammachote S, Dutta A (2008) Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Convers Manag 49(6):1345–1356

    Article  Google Scholar 

  • Jayah TH, Aye L, Fuller RJ, Stewart DF (2003) Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenergy 25(4):459–469

    Article  Google Scholar 

  • Jewiarz M, Wróbel M, Mudryk K, Szufa S (2020) Impact of the drying temperature and grinding technique on biomass grindability. Energies 13(13):3392

    Article  Google Scholar 

  • Kataki R, Chutia RS, Mishra M, Bordoloi N, Saikia R, Bhaskar T (2015) Feedstock suitability for thermochemical processes. In: Recent advances in thermo-chemical conversion of biomass. Elsevier, pp 31–74

    Chapter  Google Scholar 

  • Koido K, Iwasaki T (2018) Biomass gasification: a review of its technology, gas cleaning applications, and total system life cycle analysis. In: Lignin: trends and applications. IntechOpen, p 161

    Google Scholar 

  • Kumar A, Eskridge K, Jones DD, Hanna MA (2009a) Steam–air fluidized bed gasification of distillers grains: effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresour Technol 100(6):2062–2068

    Article  Google Scholar 

  • Kumar A, Jones DD, Hanna MA (2009b) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2(3):556–581

    Article  Google Scholar 

  • Lucas C, Szewczyk D, Blasiak W, Mochida S (2004) High-temperature air and steam gasification of densified biofuels. Biomass Bioenergy 27(6):563–575

    Article  Google Scholar 

  • Lv P, Chang J, Wang T, Fu Y, Chen Y, Zhu J (2004a) Hydrogen-rich gas production from biomass catalytic gasification. Energy Fuel 18(1):228–233

    Article  Google Scholar 

  • Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX (2004b) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95(1):95–101

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  Google Scholar 

  • Melgar A, Pérez JF, Laget H, Horillo A (2007) Thermochemical equilibrium modelling of a gasifying process. Energy Convers Manag 48(1):59–67

    Article  Google Scholar 

  • Nakamura S, Kitano S, Yoshikawa K (2016) Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed. Appl Energy 170:186–192

    Article  Google Scholar 

  • Patra TK, Sheth PN (2015) Biomass gasification models for downdraft gasifier: a state-of-the-art review. Renew Sust Energ Rev 50:583–593

    Article  Google Scholar 

  • Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14(9):2841–2851

    Article  Google Scholar 

  • Qin K, Lin W, Jensen PA, Jensen AD (2012) High-temperature entrained flow gasification of biomass. Fuel 93:589–600

    Article  Google Scholar 

  • Rapagna S, Latif A (1997) Steam gasification of almond shells in a fluidised bed reactor: the influence of temperature and particle size on product yield and distribution. Biomass Bioenergy 12(4):281–288

    Article  Google Scholar 

  • Ratnadhariya JK, Channiwala SA (2009) Three zone equilibrium and kinetic free modeling of biomass gasifier–a novel approach. Renew Energy 34(4):1050–1058

    Article  Google Scholar 

  • Ren J, Cao JP, Zhao XY, Yang FL, Wei XY (2019) Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sust Energ Rev 116:109426

    Article  Google Scholar 

  • Rogel A, Aguillon J (2006) The 2D Eulerian approach of entrained flow and temperature in a biomass stratified downdraft gasifier. Am J Appl Sci 3(10):2068–2075

    Article  Google Scholar 

  • Sadakata M, Takahashi K, Saito M, Sakai T (1987) Production of fuel gas and char from wood, lignin and holocellulose by carbonization. Fuel 66(12):1667–1671

    Article  Google Scholar 

  • Sánchez J, Curt MD, Robert N, Fernández J (2019) Biomass resources. In: Lago C, Caldés N, Lechón Y (eds) Chapter 2, The role of bioenergy in the bioeconomy. Academic Press, pp 25–111. https://doi.org/10.1016/B978-0-12-813056-8.00002-9

    Chapter  Google Scholar 

  • Sharma AK (2008a) Equilibrium and kinetic modeling of char reduction reactions in a downdraft biomass gasifier: a comparison. Sol Energy 82(10):918–928

    Article  Google Scholar 

  • Sharma AK (2008b) Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Convers Manag 49(4):832–842

    Article  Google Scholar 

  • Sharma AK (2011) Modeling and simulation of a downdraft biomass gasifier 1. Model development and validation. Energy Convers Manag 52(2):1386–1396

    Article  Google Scholar 

  • Shen Y, Yoshikawa K (2013) Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew Sust Energ Rev 21:371–392

    Article  Google Scholar 

  • Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ et al (2016) An overview of advances in biomass gasification. Energy Environ Sci 9(10):2939–2977

    Article  Google Scholar 

  • Simone M, Nicolella C, Tognotti L (2013) Numerical and experimental investigation of downdraft gasification of woody residues. Bioresour Technol 133:92–101

    Article  Google Scholar 

  • Szul M, Iluk T, Sobolewski A (2020) High-temperature, dry scrubbing of syngas with use of mineral sorbents and ceramic rigid filters. Energies 13(6):1528

    Article  Google Scholar 

  • Theerarattananoon K, Xu F, Wilson J, Ballard R, Mckinney L, Staggenborg S et al (2011) Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind Crop Prod 33(2):325–332

    Article  Google Scholar 

  • Tinaut FV, Melgar A, Perez JF, Horrillo A (2008) Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Process Technol 89(11):1076–1089

    Article  Google Scholar 

  • Tumuluru JS, Heikkila DJ (2019) Biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm. Bioengineering 6(1):12

    Article  Google Scholar 

  • Unyaphan S, Tarnpradab T, Takahashi F, Yoshikawa K (2017) Improvement of tar removal performance of oil scrubber by producing syngas microbubbles. Appl Energy 205:802–812

    Article  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933

    Article  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33

    Article  Google Scholar 

  • Wang Y, Kinoshita CM (1993) Kinetic model of biomass gasification. Sol Energy 51(1):19–25

    Article  Google Scholar 

  • Wu Y, Zhang Q, Yang W, Blasiak W (2013) Two-dimensional computational fluid dynamics simulation of biomass gasification in a downdraft fixed-bed gasifier with highly preheated air and steam. Energy Fuel 27(6):3274–3282

    Article  Google Scholar 

  • Zainal ZA, Ali R, Lean CH, Seetharamu KN (2001) Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manag 42(12):1499–1515

    Article  Google Scholar 

  • Zeng X, Ueki Y, Yoshiie R, Naruse I, Wang F, Han Z, Xu G (2020) Recent progress in tar removal by char and the applications: a comprehensive analysis. Carbon Resour Convers 3:1–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakare, S.B., Khurpade, P.D., Kulkarni, A.D., Nandi, S. (2022). Chemistry to Technology of Gasification Process: A Close Look into Reactions and Kinetic Models. In: Jacob-Lopes, E., Queiroz Zepka, L., Costa Deprá, M. (eds) Handbook of Waste Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-031-06562-0_24

Download citation

Publish with us

Policies and ethics