Skip to main content

Advances in Polyphenol Oxidase (PPO) Research

  • Chapter
  • First Online:
Polyphenol Oxidases (PPOs) in Plants

Abstract

The polyphenol oxidase (PPO) gene family has been extensively studied in Poaceae, Solanaceae, and other plant species in which the PPO activity impacts the economically important aspects like quality and disease resistance. As discussed earlier, plant PPOs exhibit large variability in their size, structure probably due to lineage-specific expansion, and gene loss (Tran et al. 2012). Surprisingly, no PPO genes have been reported in certain species like Arabidopsis thaliana. Though majority of plant PPOs show certain conserved features including dicopper center with six ligating histidine residues, N-terminal transit peptide and a C-terminal region, rare variants have also been reported (Tran et al. 2012). Below, latest developments in PPO research involving genetics, genomics, microRNAs, mutagenesis, and others are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen E, Xie Z, Gustafson AM, Sung G-H, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18(5):1134–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachem CW, Speckmann G-J, van der Linde PC, Verheggen FT, Hunt MD, Steffens JC, Zabeau M (1994) Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Nat Biotechnol 12(11):1101–1105

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Beecher BS, Skinner DZ (2011) Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum L.) kernels. J Cereal Sci 53:371–378

    Article  CAS  Google Scholar 

  • Beecher BS, Carter AH, See DR (2012) Genetic mapping of new seed-expressed polyphenol oxidase genes in wheat (Triticum aestivum L.) Theor Appl Genet 124:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Carter AH, Chen XM, Campbell KG, Kidwell KK (2009) Identification and genetic mapping of QTL for high-temperature adult plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theor Appl Genet 119:1119–1128

    Article  PubMed  Google Scholar 

  • Carter AH, Garland-Campbell K, Morris CF, Kidwell KK (2011) Chromosomes 3B and 4D are associated with several milling and baking end-use quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor Appl Genet 124(6):1079–1096

    Article  PubMed  Google Scholar 

  • Cary JW, Lax AR, Flurkey WH (1992) Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Mol Biol 20:245–253

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25(1):21–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X (2012) Small RNAs in development – insights from plants. Curr Opin Genet Dev 22(4):361–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevalier T, de Rigal D, Mbeguie AMD, Gauillard F, Richard-Forget F, Fils-Lycaon BR (1999) Molecular cloning and characterization of apricot fruit polyphenol oxidase. Plant Physiol 119:1261–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi M, Bhagwat B, Lane WD, Tang G, Su Y, Sun R, Oomah RD, Wiersma PA, Xiang Y (2014) Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biol 14:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coetzer C, Corsini D, Love S, Pavek JNT (2001) Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase. J Agric Food Chem 49(2):652–657

    Article  CAS  PubMed  Google Scholar 

  • Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression inresponse to wounding and herbivory. Plant Physiol 124:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121

    Article  CAS  PubMed  Google Scholar 

  • Demeke T, Morris C (2002) Molecular characterization of wheat polyphenol oxidase (PPO). Theor Appl Genet 104:813–818

    Article  CAS  PubMed  Google Scholar 

  • Demeke T, Morris CF, Campbell KG, King GE, Anderson JA, Chang H-G (2001) Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci 41:1750–1757

    Article  CAS  Google Scholar 

  • Dirks-Hofmeister ME, Inlow JK, Moerschbacher BM (2012) Sitedirected mutagenesis of a tetrameric dandelion polyphenol oxidase (PPO-6) reveals the site of subunit interaction. Plant Mol Biol 80:203–217

    Article  CAS  PubMed  Google Scholar 

  • Fuerst EP, Xu SS, Beecher B (2008) Genetic characterization of kernel polyphenol oxidase in wheat and related species. J Cereal Sci 48:359–368

    Article  CAS  Google Scholar 

  • Fujieda N, Yabuta S, Ikeda T, Oyama T, Muraki N, Kurisu G, Itoh S (2013) Crystal structures of copper-depleted and copper-bound fungal protyrosinase: insights into endogenous cystein-dependent copper incorporation. J Biol Chem 288:22128–22140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Sun HX, Xiao H, Cui G, Hillwig ML, Jackson A, Wang X, Shen Y, Zhao N, Zhang L, Wang XJ, Peters RJ, Huang L (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldfeder M, Kanteev M, Adir N, Fishman A (2013) Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Biochim Biophys Acta 1834:629–633

    Article  CAS  PubMed  Google Scholar 

  • Gooding PS, Bird C, Robinson SP (2001) Molecular cloning and characterisation of banana fruit polyphenol oxidase. Planta 213:748–757

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol 40:347–369

    Article  CAS  Google Scholar 

  • Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U.S.A 107(1):478–483

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient riceblast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. The Plant J 57:413–425

    Article  CAS  PubMed  Google Scholar 

  • He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47–58

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Shao F, Ma Y, Lu S (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40:4301–4310

    Article  CAS  PubMed  Google Scholar 

  • Hunt MD, Eannetta NT, Yu H, Newman SM, Steffens JC (1993) cDNA cloning and expression of potato polyphenol oxidase. Plant Mol Biol 21(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Jimenez M, Dubcovsky J (1999) Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheat. Plant Breed 118:395–398

    Article  CAS  Google Scholar 

  • Jukanti AK, Bruckner PL, Fischer AM (2004) Evaluation of wheat polyphenol oxidase genes. Cereal Chem 81:481–485

    Article  CAS  Google Scholar 

  • Jukanti AK, Bruckner PL, Fischer AM (2006) Molecular and biochemical characterization of polyphenol oxidases in developing kernels and senescing leaves of wheat (Triticum aestivum). Funct Plant Biol 33:685–696

    Article  CAS  Google Scholar 

  • Kaintz C, Molitor C, Thill J, Kampatsikas I, Michael C, Halbwirth H, Rompel A (2014) Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation. FEBS Lett 588:3417–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaintz C, Mayer RL, Jirsa F, Halbwirth H, Rompel A (2015) Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1). FEBS Lett 589:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64(7):1863–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Kosaka H, Hara T (1928) On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ 3:132–147

    Google Scholar 

  • Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154(2):611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima N, Fujisawa K, Moro-oka Y, Toriumi K (1989) μ-η 2 :η 2-Peroxobinuclear copper complex, [Cu(HB(3,5-iPr2pz)3)]2(O2). J Am Chem Soc 111:8975–8976

    Article  CAS  Google Scholar 

  • Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol 5:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Constanzo S, Jia Y, Olsen KM, Caicedo AL (2009) Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species. Genetics 183:1315–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YG, Song L, Liu M, Hu ZB, Wang ZT (2009) Advancement in analysis of Salvia miltiorrhizae Radix et Rhizoma (Danshen). J Chromatogr 1216:1941–1953

    Article  CAS  Google Scholar 

  • Li C, Li D, Li J, Shao F, Lu S (2017) Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza. Sci Rep 7:44622

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin SY, Nagamura Y, Kurata N, Yano M, Minobe Y, Sasaki T (1994) DNA markers tightly linked to genes, Ph, Alk and Rc. Rice Genet Newsl 11:108–109

    Google Scholar 

  • Llave C, Xie ZX, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Yang C, Chiang VL (2011) Conservation and diversity of microRNAassociated copper-regulatory networks in Populus trichocarpa. J Integr Plant Biol 53:879–891

    Article  CAS  PubMed  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Martin JM, Berg JE, Hofer P, Kephart KD, Nash D, Bruckner PL (2011) Allelic variation of polyphenol oxidase genes impacts on Chinese raw noodle color. J Cereal Sci 54:387–394

    Article  CAS  Google Scholar 

  • Martínez-García PJ, Crepeau MW, Puiu D, Gonzalez-Ibeas D, Whalen J, Stevens KA, Paul R, Butterfield TS, Britton MT, Reagan RL, Chakraborty S, Walawage SL, Vasquez-Gross HA, Cardeno C, Famula RA, Pratt K, Kuruganti S, Aradhya MK, Leslie CA, Dandekar AM, Salzberg SL, Wegrzyn JL, Langley CH, Neale DB (2016) The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of nonstructural polyphenols. Plant J 5:507–532

    Article  CAS  Google Scholar 

  • Marusek CM, Trobaugh NM, Flurkey WH, Inlow JK (2006) Comparative analysis of polyphenol oxidase from plant and fungal species. J Inorg Biochem 100:108–123

    Article  CAS  PubMed  Google Scholar 

  • Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281:8981–8990

    Article  CAS  PubMed  Google Scholar 

  • Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A (2014) Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate (VI) in a single crystal. Acta Crystallogr D70:2301–2315

    Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping ofrice chromosomes. Theor Appl Genet 76:815–829

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J-K (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miosic S, Knop K, Hölscher D, Greiner J, Gosch C, Thill J, Kai M, Shrestha BK, Schneider B, Crecelius AC, Schubert US, SvatoÅ¡ A, Stich K, Halbwirth H (2013) 4-Deoxyaurone formation in Bidens ferulifolia (Jacq.) DC. PLoS One 8:e61766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishima H, Oka HI (1960) The pattern of interspecific variation in the genus Oryza: its quantitative representation by statistical methods. Evol Int J Org Evol 14:153–165

    Google Scholar 

  • Murata M, Nishimura M, Murai N, Haruta M, Homma S, Itoh Y (2001) A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential. Biosci Biotechnol Biochem 65(2):383–388

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Nakajima T, Ohba Y, Yamauchi S, Lee BR, Ichishima E (2000) Identification of copper ligands in Aspergillus oryzae tyrosinase by sitedirected mutagenesis. Biochem J 350:537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T (2002) Enzymology of aurone biosynthesis. J Biosci Bioeng 94:487–491

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Yonekura-Sakakibara K, Sato T, Kikuchi S, Fukui Y, Fukuchi-Mizutani M, Ueda T, Nakao M, Tanaka Y, Kusumi T, Nishino T (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Newman SM, Eannetta NT, Yu H, Prince JP, de Vicente MC, Tanksley SD, Steffens JC (1993) Organization of the tomato polyphenol oxidase gene family. Plant Mol Biol 21:1035–1051

    Article  CAS  PubMed  Google Scholar 

  • Newman SM, Tantasawat P, Steffens JC (2011) Tomato polyphenol oxidase B is spatially and temporally regulated during development and in response to ethylene. Molecules 16:493–517

    Article  CAS  PubMed  Google Scholar 

  • Oka HI (1953) Phylogenetic differrentiation of the cultivated rice plant. 1. Variations in respective characteristics and their combinations in rice cultivars. Jpn J Breed 3:33–43

    Article  Google Scholar 

  • Oka HI (1958) Intervarietal variation and classification of cultivated rice. Indian J Genet Plant Breed 18:79–89

    Google Scholar 

  • Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci U.S.A 103:11075–11080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarta A, Mita G, Durante M, Arlorio M, de Paolis A (2013) Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads. Plant Physiol Biochem 68:52–60

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  CAS  PubMed  Google Scholar 

  • Rhoades JMW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  Google Scholar 

  • Richter H, Lieberei R, Strnad M, Novák O, Gruz J, Rensing SA, von Schwartzenberg K (2012a) Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent developmentin the moss Physcomitrella patens. J Exp Bot 63(14):5121–5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter C, Dirks ME, Gronover CS, Prüfer D, Moerschbacher BM (2012b) Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato. Mol Plant-Microbe Interact 25(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005) The pattern of intron loss. PNAS, USA 102:713–718

    Article  CAS  Google Scholar 

  • Sablok G, Perez-Quintero AL, Hassan M, Tatarinova TV, Lopez C (2011) Artificial microRNAs (amiRNAs) engineering – on how microRNA-based silencing methods have affected current plant silencing research. Biochem Biophys Res Commun 406(3):315–319

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Yano M, Kishimoto N, Nakagawa M, Yoshimura A, Saito K, Kuharamsatoru UY, Kawase M, Nagamine T, Yoshimura S, Ideta O, Ohsawa R, Hayano Y, Iwata N, Sugiura M (1991) Linkage map of restriction fragment length polymorphism loci in rice. Jpn J Breed 41:665–670

    Article  CAS  Google Scholar 

  • Schwab R, Voinnet O (2010) RNA silencing amplification in plants: size matters. Proc Natl Acad Sci U.S.A 107(34):14945–14946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao F, Qiu D, Lu S (2015) Comparative analysis of the Dicer-like gene family reveals loss of miR162 target site in SmDCL1 from Salvia miltiorrhiza. Sci Rep 5:9891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty SM, Chandrashekar A, Venkatesh YP (2011) Eggplant polyphenol oxidase multigene family: cloning, phylogeny, expression analyses and immunolocalization in response to wounding. Phytochem 72:2275–2287

    Article  CAS  Google Scholar 

  • Smith N, Guttieri M, Souza E, Shoots J, Sorrells M, Sneller C (2011) Identification and validation of QTL for grain quality traits in a cross of soft wheat cultivars Pioneer Brand 25R26 and Foster. Crop Sci 51:1424–1436

    Article  Google Scholar 

  • Song JY, Luo HM, Li CF, Sun C, Xu J, Chen SL (2013) Salvia miltiorrhiza as medicinal model plant. Yao Xue Xue Bao 48:1099–1106

    PubMed  Google Scholar 

  • Sullivan ML, Hatfield RD, Thoma SL, Samac DA (2004) Cloning and characterization of red clover polyphenol oxidase cDNAs and expression of active protein in Escherichia coli and transgenic alfalfa. Plant Physiol 136:3234–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun DJ, He ZH, Xia XC, Zhang LP, Morris CF, Appels R, Ma WJ, Wang H (2005) A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed 16:209–218

    Article  CAS  Google Scholar 

  • Taketa S, Matsuki K, Amano S, Saisho D, Himi E, Shitsukawa N, You T, Noda K, Takeda K (2010) Duplicate polyphenol oxidase genes on barley chromosome 2H and their functional differentiation in the phenol reaction of spikes and grains. J Exp Bot 61:3983–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y (2010) Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol 153(2):632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, Fulton TM, McCouch SR (1993) Genetic maps: locus maps of complex genomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Taranto F, Mangini G, Pasqualone A, Gadaleta A, Blanco A (2015) Mapping and allelic variations of Ppo-B1 and Ppo-B2 gene-related polyphenol oxidase activity in durum wheat. Mol Breed 35:80

    Article  CAS  Google Scholar 

  • Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi MM, Pavan S, Montemurro C (2017) Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int J Mol Sci 18:377

    Article  PubMed Central  Google Scholar 

  • Thipyapong P, Steffens JC (1997) Tomato polyphenol oxidase: differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiol 115:409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thipyapong P, Joel DM, Steffens JC (1997) Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol 113:707–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (2004) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220(1):105–117

    Article  CAS  PubMed  Google Scholar 

  • Thygesen PW, Dry IB, Robinson SP (1995) Polyphenol oxidase in potato. A multigene family that exhibits differential expression patterns. Plant Physiol 109(2):525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LT, Taylor JS, Constabel CP (2012) The polyphenol oxidase gene family in plants: lineage-specific duplication and gene expansion. BMC Genomics 13:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahler D, Gronover CS, Richter C, Foucu F, Twyman RM, Moerschbacher BM, Fischer R, Muth J, Prufer D (2009) Polyphenoloxidase silencing affects latex coagulation in Taraxacum species. Plant Physiol 151(1):334–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Li C, Lu S (2017) Origin and evolution of MIR1444 genes in Salicaceae. Sci Rep 7:39740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific genesilencing by artificial miRNAs in rice. PLoS One 3(3):e1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe N, Takeuchi A, Nakayama A (2004) Inheritance and chromosomal location of the homeologous genes affecting phenol colour reaction of kernels in durum wheat. Euphytica 139:87–93

    Article  CAS  Google Scholar 

  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137:1–9

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Jiang Q, Ma X, Ying Q, Shen B, Qian Y, Song H, Wang H (2014) Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS One 9:e111679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, Au KF, Song J, Chen S (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82(6):951–961

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, Sun W, Shen G, Zhang X, Qian J, Ji A, Xu Z, Luo X, He L, Li C, Sun C, Yan H, Cui G, Li X, Li X, Wei J, Liu J, Wang Y, Hayward A, Nelson D, Ning Z, Peters RJ, Qi X, Chen S (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 6:949–952

    Article  CAS  Google Scholar 

  • Yu Y, Tang T, Qian Q, Wang Y, Yan M, Zeng D, Han B, Wu C-I, Shi S, Lia J (2008) Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell 20:2946–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LP, Ge XX, He ZH, Wang DS, Yan J, Xia XC, Sutherland MW (2005) Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat. Acta Agron Sin 31:7–10

    Google Scholar 

  • Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20(3):569–581

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Wang W, Bai X, Qi Y (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58(1):157–164

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jukanti, A. (2017). Advances in Polyphenol Oxidase (PPO) Research. In: Polyphenol Oxidases (PPOs) in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-5747-2_7

Download citation

Publish with us

Policies and ethics