Skip to main content

Litchi Fruit Set, Development, and Maturation

  • Chapter
  • First Online:
The Lychee Biotechnology

Abstract

In broad terms, fruit development can be divided into three stages: set, growth, and maturation. The fruit set of litchi are established soon after fertilization except for the parthenocarpic cultivars, which grow fruits without fertilization. In structure, the fruit of litchi is a drupe with an edible aril enclosing a single seed surrounded by a pericarp. Some cultivars produce a proportion of aborted seeds and thus have a higher flesh recovery than others, while a few rare strains produce seedless fruit. The aril (flesh) of litchi is white, semitranslucent, and juicy with sweet taste and fragrant flavor. The tuberculate skin or pericarp is green, yellow-red, or red, depending on the cultivar. Fruit set, development, and maturation of litchi are the crucial period for yield and quality formation. Understanding the fruit set, development, maturation, and the health benefit property will be helpful to increase yield and produce high-quality fruit and the consumption of litchi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamine EK, Goo T (1973) Respiration and ethylene production during ontogeny of fruit. J Am Soc Hort Sci 98:381–383

    CAS  Google Scholar 

  • Batten DJ, McConchie CA, Lloyd J (1994) Effects of soil water deficit on gas exchange characteristics and water relations of orchard lychee (Litchi chinensis Sonn.) trees. Tree Physiol 14:1177–1189

    Google Scholar 

  • Bhoopat L, Srichairatanatkool S, Kanjanapothi D, Taesotikul T, Thananchai H, Bhoopat T (2011) Hepatoprotective effects of lychee (Litchi chinensis Sonn.): a combination of anti-oxidant and anti-apoptotic activities. J Ethnopharmacol 136:55–66

    Article  CAS  PubMed  Google Scholar 

  • Chang JC, Lin TS (2003) Effect of inflorescence thinning on flower sex ratio, fruit set and fruit quality in ‘Yu Her Pau’ litchi (Litchi chinensis Sonn.). J Agr Assoc China 4:418–428

    Google Scholar 

  • Chen PA, Roan SF, Lee CL et al (2013) The effect of temperature during inflorescence development to flowering and inflorescence length on yield of ‘Yu Her Pau’ litchi. Sci Hortic 159:186–189

    Article  Google Scholar 

  • Chen PA, Lee CL, Roan SF, Chen LZ (2014) Effects of GA3 application on the inflorescence and yield of ‘Yu Her Pau’ litchi. Sci Hortic 171:45–50

    Article  CAS  Google Scholar 

  • Choudhury SR, Roy S, Sengupta DN (2009) A comparative study of cultivar differences in sucrose phosphate synthase gene expression and sucrose formation during banana fruit ripening. Postharvest Biol Technol 54:15–24

    Article  CAS  Google Scholar 

  • Chu YC, Lin TS, Chang JC (2015) Pollen effects on fruit set, seed weight, and shriveling of ‘73-S-20’ litchi with special reference to artificial induction of parthenocarpy. HortSci 50:369–373

    Google Scholar 

  • Chyau CC, Ko PT, Chang CH, Mau JL (2003) Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.). Food Chem 80:387–392

    Article  CAS  Google Scholar 

  • Degani C, Stern RA, El-Batsri R et al (1995) Pollen parent effect on the selective abscission of Mauritius and Floridian lychee fruitlets. J Amer Soc Hort Sci 120:523–526

    Google Scholar 

  • Dhua RS, Roychoudhury R, Kabir J, Ray SKD (2005) Stagger the lychee fruit harvest. Acta Hortic 665:347–354

    Article  Google Scholar 

  • Feng W, Zhang L, Li SG, Chen YY, Luo SR (2010) Comparison on embryonic development process of three cultivars of Litchi chinensis. Subtrop Plant Res Comm 31:736–739 (Chinese with English abstract)

    CAS  Google Scholar 

  • Goncalves VD, Pires MC, Yamanishi OK (2014) Synthetic auxin 3-5-6 TPA increased fruit size and retention of ‘Bengal’ lychee in Brazil. Acta Hortic 1042:65–72

    Article  Google Scholar 

  • Hieke S, Menzel CM, Doogan VJ, Ludders P (2002) The relationship between yield and assimilate supply in lychee (Litchi chinensis Sonn.). J Hortic Sci Biotechnol 77:326–332

    Article  Google Scholar 

  • Hu B, Zhao JT, Lai B et al (2016) LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Reports. doi:10.1007/s00299-015-1924-4

    Google Scholar 

  • Huang HB (2002) Unfruitfulness of young litchi trees in relation to their peculiar root growth behavior: an overview. Acta Hortic 575:737–743

    Article  Google Scholar 

  • Huang HB (2005) Fruit set, development and maturation. In: Menzel CM, Waite GK (eds) Litchi and longan botany, production and uses. CABI, Wallingford

    Google Scholar 

  • Huang HB, Qiu YX (1987) Growth correlations and assimilate partitioning in the arillate fruit of Litchi chinensis Sonn. Aust J Plant Physiol 14:181–188

    Article  Google Scholar 

  • Huang HB, Xu JK (1983) The developmental patterns of fruit tissues and their correlative relationships in Litchi chinensis Sonn. Sci Hortic 19:335–342

    Article  Google Scholar 

  • Huang HB, Jiang SY, Xie C (1983) The initiation of aril and ontogeny of fruit in Litchi Chinese Sonn. J South China Agric College 4:78–83 (Chinese with English abstract)

    Google Scholar 

  • Huang F, Zhang RF, Dong LH, Guo JX, Deng YY, Yi Y, Zhang MW (2015) Anti-oxidant and antiproliferative activities of polysaccharide fractions from litchi pulp. Food Funct 6:2598–2606

    Google Scholar 

  • Ibrahim SRM, Mohamed GA (2015) Litchi chinensis: medicinal uses, phytochemistry, and pharmacology. J Ethnopharmacol. doi:10.1016/j.jep.2015.08.054

    Google Scholar 

  • Jiang JP, Su MX, Lee PM (1986) The production and physiological effects of ethylene during ontogeny and after harvest of litchi fruits. Acta Phys Sin 12:95–103 (Chinese with English abstract)

    CAS  Google Scholar 

  • Jiang SY, Xu HY, Wang HC, Hu GB, Li JG, Chen HB, Huang XM (2012) A comparison of the costs of flowering in ‘Feizixiao’ and ‘Baitangying’ litchi. Sci Hortic 148:118–125

    Article  Google Scholar 

  • Jiang G, Lin S, Wen L et al (2013) Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. Food Chem 136:563–568

    Article  CAS  PubMed  Google Scholar 

  • Joubert AJ (1986) Litchi. In: Monselise SP (ed) Hand book of fruit set and development. CRC press, Boca Raton, pp 233–246

    Google Scholar 

  • Komatsu A, Takanokura Y, Moriguchi T, Omura M, Akihama T (1999) Differential expression of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits (Citrus unshiu Marc.). Plant Sci 140:169–178

    Article  CAS  Google Scholar 

  • Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Zhang M, Liao S, Yu S, Chi J, Wei Z (2010) Anti-oxidant activity of polysaccharide-enriched fractions extracted from pulp tissue of Litchi chinensis Sonn. Molecules 15:2152–2165

    Article  CAS  PubMed  Google Scholar 

  • Kuang JF, Wu JY, Zhong HY, Li CQ, Chen JY, Lu WJ et al (2012) Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi. Int J Mol Sci 13:16084–16103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai B, Li XJ, Hu B, et al. (2014) LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS One, 9(1): e86293.

    Google Scholar 

  • Lai B, Hu B, Qin YH et al (2015) Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics 16:225. doi:10.1186/s12864-015-1433-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai B, Du LN, Liu R et al (2016) Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in nicotiana and Litchi chinensis during anthocyanin accumulation. Front Plant Sci 7:166 Doi.org/10.3389/fpls.2016.00166

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Wicker L (1991) Anthocyanin pigments in the skin of lychee fruit. J Food Sci 56:466–468

    Article  CAS  Google Scholar 

  • Li JG (2001) Ontogenetic studies of fruit development and minimizing cracking in Litchi Chinese Sonn. Ph.D. thesis, South China Agricultural University, Guangzhou, China. (Chinese with English abstract)

    Google Scholar 

  • Li JG, Huang HB (1994) Analysing the cause of litchi fruit cracking increased by rain after a long period of drought. In: Zhang SL, Chen KS (eds) 481 Advances in Horticulture (I). China Agri. Press, Beijing, pp 361–364

    Google Scholar 

  • Li JG, Zhou BY (2015) Comparison on fruit development and changes in endogenous hormone contents in pericarp between large- and aborted –seeded litchi (Litchi chinensis Sonn. c.v Guiwei). Comm Plant Physiol 41(5):587–590 (Chinese with English abstract)

    Google Scholar 

  • Li JG, Huang XM, Huang HB (2010) An overview of factors relaled to fruit size in Litchi chinensis Sonn. Acta Hort 863:477-482

    Google Scholar 

  • Li JG, Huang XM, Huang HB, Zhou BY (2002) A cytological and physiological study of large-fruited and small-fruited litchi cultivars. J Fruit Sci 19:158–162 (Chinese with English abstract)

    Google Scholar 

  • Li JG, Huang HB, Huang XM (2003a) Re-evaluation of the division of developmental stages in litchi fruit. Acta Hort Sinica 30(3):307–310 (Chinese with English abstract)

    Google Scholar 

  • Li JG, Huang HB, Huang XM (2003b) Relationship between nutrient competition and differential fruit sizing of ‘Feizixiao’ litchi fruit from early and late blooms. J Fruit Sci 20(3):195–198 (Chinese with English abstract)

    Google Scholar 

  • Li JG, Huang HB, Huang XM (2004) Effects of bark ring incision on fruit sizing and fruit cracking in ‘Nuomici’ litchi (Litchi chinensis Sonn.). J Fruit Sci 21(u):379–381 (Chinese with English abstract)

    CAS  Google Scholar 

  • Li JG, Zhou BY, Huang XM, Huang HB (2005) The roles of cytokinins and abscisic acid in the pericarp of litchi (Litchi chinensis Sonn.) in determining fruit size. J Hortic Sci Biotechnol 80:587–590

    Google Scholar 

  • Li C, Wang Y, Ying P, Ma W, Li J (2015a) Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi. Front Plant Sci 6:502

    PubMed  PubMed Central  Google Scholar 

  • Li C, Wang Y, Huang X, Li J, Wang H, Li J (2015b) An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Front Plant Sci 6:439. doi:10.3389/fpls.2015.00439

    PubMed  PubMed Central  Google Scholar 

  • Li XJ, Lai B, Zhao JT, Qin YH, He JM, Huang XM, Wang HC, Hu GB (2016a) Sequence differences in LcFGRT4 alleles are responsible for the diverse anthocyanin composition in the pericarp of Litchi chinensis. Mol Breed 36:93. doi:10.1007/s11032-016-0518-3

    Article  CAS  Google Scholar 

  • Li XJ, Zhang JQ, Wu ZC, Lai B, Huang XM, Qin YH, Wang HC, Hu GB (2016b) Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis. Physiol Plant 156:139–149

    Article  CAS  Google Scholar 

  • Liu SS, Ye YC, Zhao XD, Ye YX (1999) An embryological study of seed abortion in a seedless litchi strain. J South China Agric College 20(2):41–46 (Chinese with English abstract)

    CAS  Google Scholar 

  • Lü LX, Chen JL, Chen XJ (1985) An observation on the process of embryo development in litchi. Subtrop Plant Res Comm 1:1–5 (Chinese with English abstract)

    Google Scholar 

  • Lü Q, Si MM, Yan YY, Luo FL, Hu GB, Wu HS, Sun CD, Li X, Chen KS (2014) Effects of phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods 7:621–629

    Article  Google Scholar 

  • Menzel CM, Oosthuizen JH, Roe DJ, Doogan VJ (1995) Water deficits at anthesis reduce CO2 assimilation and yield of lychee (Litchi chinensis Sonn.) trees. Tree Physiol 15:611–617

    Article  CAS  PubMed  Google Scholar 

  • Mitra SK, Mandal D (2014) Delaying the harvesting of litchi by using gibberellic acid. Acta Hortic 1024:183–187

    Article  Google Scholar 

  • Ngugen-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  Google Scholar 

  • Ogasawara J, Kitadate K, Nishioka H, Fujii H, Sakurai T, Kizaki T, Izawa T, Ishida H, Ohno H (2009) Oligonol, a new lychee fruit-derived lowmolecular form of polyphenol, enhances lipolysis in primary rat adipocytes through activation of the ERK1/2 pathway. Phytother Res 23:1626–1633

    Article  CAS  PubMed  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element un-loading and post-sieve element transport. Annu Rev Plant Physiol 48:191–222

    Article  CAS  Google Scholar 

  • Paull RE, Chen NJ, Deputy J, Huang HB, Cheng GW, Gao FF (1984) Litchi growth and compositional changes during fruit development. J Amer Soc Hort Sci 109:817–821

    CAS  Google Scholar 

  • Peng G, Wu JY, Lu WJ, Li JG (2013) A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission. Sci Hortic 150:244–250

    Article  CAS  Google Scholar 

  • Qiu YP, Zhang ZW, Qiu RX (1994) Study on embryo and endosperm development of Litchi chinensis Sonn. Chinese Bull Bot 11:45–47 (Chinese with English abstract)

    Google Scholar 

  • Qiu YP, Xiang X, Wang BQ, Zhang ZW, Yuan PY (1998) Endogenous hormone balance in three types of litchi fruit and their fruit set mechanism. J Fruit Sci 15:39–43 (Chinese with English abstract)

    Google Scholar 

  • Qiu YP, Ou LX, Li ZQ, Xiang X, Chen JZ, Wang BR (2006) Efects of pollinator on fruit quality of Guiwei litchi cultivar. J Fruit Sci 23:703–706 (Chinese with English abstract)

    Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Sarni-Manchado P, Le Roux E, Le Guerneve C, Lozano Y, Cheynier V (2000) Phenolic composition of litchi fruit pericarp. J Agric Food Chem 48:5995–6002

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Ray PK, Rai R (1986) The use of growth regulators for early ripening of litchi (Litchi chinensis Sonn.). J Hort Sci 61:533–534

    CAS  Google Scholar 

  • Shi BM, Chen YR (2000) Observation on the embryo sac development of litchi. China Hort 46:359–368 (Chinese with English abstract)

    Google Scholar 

  • Stern RA, Gazit S (1996) Lychee pollination by the honeybee. J Amer Soc Hort Sci 121:152–157

    Google Scholar 

  • Stern RA, Gazit S (2003) The reproductive biology of the lychee. Hortic Rev 28:393–453

    Google Scholar 

  • Stern RA, Gazit S, El-Batsri R, Degani C (1993) Pollen parent effect on outcrossing rate, yield, and fruit characteristics of ‘Floridian’ and ‘Maritius’ lychee. J Amer Soc Hort Sci 118:109–114

    Google Scholar 

  • Stern RA, Stern D, Harpaz M, Gazit S (2000) Applications of 2,4,5-TP, 3,5,6-TPA and combinations thereof increase lychee fruit size and yield. HortSci 35:661–664

    CAS  Google Scholar 

  • Stern RA, Stern D, Miller H, Xu H, Gazit S (2001) The effect of the synthetic auxins 2,4,5-TP and 3,5, 6-TPA on yield and fruit size of young ‘Fei Zi Xiao’ and ‘Hei Ye’ litchi trees in Guangxi Province, China. Acta Hortic 558:285–288

    Article  CAS  Google Scholar 

  • Subhadrabandhu S, Stern RA (2005) Taxonomy, botany and plant development. In: Menzel CM, Waite GK (eds) Litchi and longan botany, production and uses. CABI, Wallingford

    Google Scholar 

  • Tomer E, Zipori I, Goren M, Shooker S, Ripa M, Foux Y (2001) Delaying the ripening of ‘Mauritius’ litchi fruit (preliminary results). Acta Hortic 558:315–317

    Article  Google Scholar 

  • Underhill S, Critchley C (1994) Anthocyanin decolorisation and its role in lychee pericap browning. Aust J Experi Agric 34:115–122

    Article  CAS  Google Scholar 

  • Vizzotto G, Pinton R, Varanini Z, Costa G (1996) Sucrose accumulation in developing peach fruit. Physiol Plant 96:225–2230

    Article  CAS  Google Scholar 

  • Wang HC, Huang XM, Huang HB (2002) A study on the causative factors retarding pigmentation in the fruit of ‘Feizixiao’ litchi. Acta Hortic Sinica 19:408–412 (Chinese with English abstract)

    Google Scholar 

  • Wang HC, Huang XM, Hu GB, Yang Z, Huang HB (2005) A comparative study of chlorophyll loss and its related mechanism during fruit maturation in the pericarp of fast- and slow-degreening litchi pericarp. Sci Hortic 106:247–257

    Article  CAS  Google Scholar 

  • Wang HC, Huang HB, Huang XM, Hu ZQ (2006) Sugar and acid compositions in the arils of Litchi chinensis Sonn.: cultivar differences and evidence for the absence of succinic acid. J Hortic Sci Biotechnol 81:57–62

    Article  CAS  Google Scholar 

  • Wang H, Huang H, Huang X (2007) Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn. Plant Growth Regul 52:189–198

    Article  CAS  Google Scholar 

  • Wang HC, Hu ZQ, Wang Y, Chen HB, Huang XM (2011) Phenolic compounds and the anti-oxidant activities in litchi pericarp: difference among cultivars. Sci Hortic 129:784–789

    Article  CAS  Google Scholar 

  • Wang TD, Zhang HF, Wu ZC, Li JG, Huang XM, Wang HC (2015) Sugar uptake in the aril of litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4. Plant Cell Physiol 56:377–387

    Article  CAS  PubMed  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One 6:e19455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SX (1998) Encyclopedia of China fruits: Litchi. China Forestry Press, Beijing

    Google Scholar 

  • Wu DY, Lin XD, Ye QH, Wang WH (2000) Improvement of fruit-set in secondary panicles of Feizixiao litchi by removal of the primary panicles. J South China Agric Univ 21:19–21 (Chinese with English abstract)

    Google Scholar 

  • Wu ZC, Yang ZY, Li JG, Chen HB, Huang XM, Wang HC (2016) Methyl-inositol, γ-aminobutyric acid and other health benefit compounds in the aril of litchi. Int J Food Sci Nutr 67:762–772

    Google Scholar 

  • Xia R, Li CQ, Lu WJ, Du J, Wang ZH, Li JG (2012) 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) is highly associated with the cell division during the early stage of fruit development which determines the final fruit size in Litchi chinensis. Gene 498:28–35

    Article  Google Scholar 

  • Xiang X, Ou LX, Qiu YP, Yuan PY, Chen JZ (2001) Embryo abortion and pollen parent effects in ‘Nuomici’ and ‘Guiwei’. Acta Hortic 558:257–260

    Article  Google Scholar 

  • Yamanishi E, Yoshigai T, Okuyama M, Mori H, Murase T, Machida T, Okumura M, Nishizawa M (2014) The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 9:e93818

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang ZY, Wang TD, Wang HC, Huang XM, Qin YH, Hu GB (2013) Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn. J Plant Physiol 170:731–740

    Article  CAS  PubMed  Google Scholar 

  • Yang ZY, Zhang JQ, Wang TD, Huang XM, Hu GB, Wang HC (2014) Does acid invertase regulate the seed development of Litchi chinensis? Acta Hortic 1029: 301–307

    Google Scholar 

  • Ye XL, Wang DX, Qian NF (1992) Embryological studies of Litchi Chinese. Acta Bot Yunnanica 14:59–65 (Chinese with English abstract)

    Google Scholar 

  • Yin JH, Gao FF, Hu GB, Zhu SH (2001) The regulation of litchi maturation and coloration by abscisic acid and ethylene. Acta Hortic 558:293–296

    Article  CAS  Google Scholar 

  • Yuan RC, Huang HB (1988) Litchi fruit abscission: its patterns, effect of shading and relation to endogenous abscisic acid. Sci Hortic 36:281–292

    Article  CAS  Google Scholar 

  • Yuan RC, Huang HB (1992) Improvement of fruit-set in Litchi chinensis Sonn. through regulation of source-sink relationship. J South China Agric Univ 13:136–142 (Chinese with English abstract)

    Google Scholar 

  • Yuan WQ, Huang XM, Wang HC, Li JG, Chen HB, Yin JH (2009) The correlation of carbon nutrient reserves dynamics and fruit set of ‘Nuomici’ litchi. Acta Hortic Sin 36:1568–1574 (Chinese with English abstract)

    CAS  Google Scholar 

  • Zhang Z, Xuequn P, Yang C, Ji Z, Jiang Y (2004) Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem 84:601–604

    Article  CAS  Google Scholar 

  • Zhang R, Zeng Q, Deng Y et al (2013) Phenolic profiles and anti-oxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem 136:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Zhang HN, Li WC, Wang HC, Shi SY, Shu B, Liu LQ, Wei YZ, Xie JH (2016) Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Front Plant Sci 7:963. doi:10.3389/fpls.2016.00963

    PubMed  PubMed Central  Google Scholar 

  • Zhao ZC, Hu GB, Hu FC et al (2012) The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration. Mol Biol Rep 39:6409–6415

    Article  CAS  PubMed  Google Scholar 

  • Zhou BY, Ji ZL, Ye YC, Zhao XD (1998) Changes of endogenous hormones in litchi fruits during fruit development. Acta Hortic Sin 23:13–18 (Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Cong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, HC., Lai, B., Huang, XM. (2017). Litchi Fruit Set, Development, and Maturation. In: Kumar, M., Kumar, V., Prasad, R., Varma, A. (eds) The Lychee Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3644-6_1

Download citation

Publish with us

Policies and ethics