Skip to main content

Modulation of Plant Micronutrient Uptake by Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:
Probiotics and Plant Health

Abstracts

Plants require light, water, and nutrients for better growth and reproduction. Arbuscular mycorrhizal (AM) fungi associate with root systems of most land plants and improve plant growth by enhancing the uptake of soil nutrients, including micronutrients. Contradictory influence of mycorrhizal plants in micronutrient uptake may be due to different edaphic conditions, which affect AM fungal root colonization and extraradical hyphal development. The micronutrient uptake of plants is influenced by different factors like availability of macronutrient like phosphorus (P) and micronutrients themselves in soil. AM fungal hyphal growth and root colonization are suppressed by high levels of micronutrients in soil. In soils the mobility of Cu, Zn, Mn, and Fe is low, and uptake by roots is restricted by low diffusion rates and root depletion zones created by plant roots. AM plants overcome this by exploring large volume of soil compared to roots and minimize the diffusion distance to enhance the availability of these immobile nutrients. Uptake of Cu and Zn or Mn and Fe is quite different. The uptake of Cu and Zn is affected by amount of plant and soil P levels, whereas the uptake of Mn and Fe is affected by indirect reduction of oxidation-reduction potential and availability of Mn and Fe in mycorrhizosphere. Under stress conditions, AM fungi help plants to increase their nutrient uptake, thereby imparting tolerance to prevailing stress. This is seen especially under saline conditions where AM fungal application limits the Na+ and Ca2+ ion concentration in plants by enhancing Mg2+ uptake, thereby increasing chlorophyll concentration, photosynthetic efficiency, and plant growth. AM fungi are potential tool for improving plant health and rhizosphere for better uptake of micronutrients under various edaphic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adiova JM, Pampolina NM, Aggangan NS (2013) Effect of arbuscular mycorrhizal fungi inoculation on growth and Cu uptake and toxicity of Desmodium cinereum (Kunth) DC. Philipp J Sci 142:87–96

    Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effect of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Al-Raddad A, Clark RB (1998) Water stress and mycorrhizal –isolate effects on growth and nutrient acquisition of wheat. J Plant Nutr 21:891–902

    Article  CAS  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Arines JA, Vilarijo K, Sainz P (1989) Effect of different inocula of VAM fungi on manganese content and concentration in clover plants. New Phytol 112:2150–2219

    Article  Google Scholar 

  • Arines J, Porto ME, Vilarino A (1992) Effect of manganese on vesicular arbuscular mycorrhizal development in red clover plants and on soil Mn-oxidizing bacteria. Mycorrhiza 1:127–131

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ grown in zinc contaminated soil. Mycorrhiza 16:277–283

    Article  CAS  PubMed  Google Scholar 

  • Azcon R, Barea JM (1992) The effect of vesicular arbuscular mycorrhizae in decreasing Ca acquisition by alfalfa plants in calcareous soils. Biol Fertil Soils 13:155–159

    CAS  Google Scholar 

  • Bagheri V, Shamshiri VH, Shirani H, Roosta HR (2012) Nutrient uptake and distribution in mycorrhizal Pistachio seedlings under drought stress. J Agric Sci Technol 14:1591–1604

    Google Scholar 

  • Bethlenfalvay GJ, Farson RL (1989) Manganese toxicity alleviated by Mycorrhizae in soyabean. J Plant Nutr 12:953–970

    Article  CAS  Google Scholar 

  • Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus amended with zinc and phosphorus. Chemosphere 50:831–837

    Article  CAS  PubMed  Google Scholar 

  • Broadley M, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Burkert B, Robson A (1994) 65 Zn uptake in subterranean clover (Trifolium subterraneum L.) by 3 vesicular arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26:1117–1124

    Article  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Caris C, Hördt W, Hawkins HJ, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    Article  CAS  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    Article  CAS  Google Scholar 

  • Chu EY (1999) The effects of arbuscular mycorrhizal fungi inoculation on Euterpe oleracea mart. (açaí) seedlings. Pesq Agropec Bras Brasília 34:1019–1024

    Article  Google Scholar 

  • Clark RB, Zeto SK (1996) Iron acquisition by mycorrhizal maize grown on alkaline soil. J Plant Nutr 19:247–264

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Cramer GR, Lauchli A, Polito VS (1985) Displacement of Ca2þ by Naþ from the plasmalemma of root cells: a primary response to salt stress? Plant Physiol 79:207–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE, Römheld V, Marschner H, Szaniszlo PJ (1992) Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142:1–7

    Article  CAS  Google Scholar 

  • Eivazi F, Weir CC (1989) Phosphorus and mycorrhizal interaction on uptake of P and trace elements by maize. Fertil Res 21:19–22

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • George E, Haussler K, Vetterlein G, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Article  Google Scholar 

  • Ghasemi-Fasaei R, Jarrah M, Mayel S (2012) Dynamics of manganese adsorption onto highly calcareous soils of Southern Iran. Int J Agric Crop Sci 4:1676–1680

    Google Scholar 

  • Gianinazzi S, Schuepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, p 226

    Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular arbuscular mycorrhizas. New Phytol 95:247–261

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Gnekow MA, Marschner H (1989) Influence of the fungicide pentachloronitrobenzene on VA mycorrhizal and total root length and phosphorus uptake of oats (Avena sativa). Plant Soil 114:91–98

    Article  CAS  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to uptake of Cadmium and Nickel in bean by maize plants. Plant Soil 184:195–205

    Article  CAS  Google Scholar 

  • Habte H, Soedarjo M (1995) Limitation of vesicular-arbuscular mycorrhizal activity in Leucaena leucocephala by Cain sufficiency in an acid Mn-rich oxisol. Mycorrhiza 5:387–394

    Article  CAS  Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2007) Soil fertility and fertilizers, an introduction to nutrient management, 7th edn. Pearson Education Inc. Singapore, p 221

    Google Scholar 

  • Hildebrandt U, Hoef-Emden K, Backhausen S, Bothe H, Bożek M, Siuta A, Kuta E (2006) The rare endemic zinc violets of Central Europe originate from Viola lutea Huds. Plant Syst Evol 257:205–222

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic matter. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Hosseini A, Gharaghani A (2015) Effects of Arbuscular mycorrhizal fungi on growth and nutrient uptake of Apple rootstocks in calcareous soil. Int J Hortic Sci Technol 2:173–185

    CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long–distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agron 23:481–488

    Article  CAS  Google Scholar 

  • Jarstfer AG, Farmer-Koppenol P, Sylvia DM (1998) Tissue magnesium and calcium affect mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–242

    Article  CAS  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kahneh E, Ramezanpour H, Haghparast Tanha MR, Shirinferk A (2006) Effects of arbuscular mycorrhizal fungi and phosphorous supplement on leaf P, Zn, Cu and Fe concentrations of tea seedlings. Caspian J Environ Sci 4:53–58

    Google Scholar 

  • Kilham K, Firestone MK (1983) Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48

    Article  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645

    Article  CAS  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991) Effect of a vesicular- arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.) New Phytol 117:649–655

    Article  CAS  Google Scholar 

  • Lambert DH, Weidensaul TC (1991) Element uptake by mycorrhizal soybean from sewage sludge-treated soil. Soil Sci Soc Am J 55:393–398

    Article  CAS  Google Scholar 

  • Lambert DH, Baker DE, Cole HJR (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements. Soil Sci Soc Am J 43:976–980

    Article  CAS  Google Scholar 

  • Lee YJ, George E (2005) Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278:361–370

    Article  CAS  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants—a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Li XL, George E, Marschner H (1991) Phosphorus depletion and pH decreases at the root–soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilizer with ammonium. New Phytol 119:397–404

    Article  CAS  Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASASpec, Madison, pp 45–70

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays) growth in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Lu S, Miller MH (1989) The role of VA Mycorrhizae in the absorption of P and Z by maize in field and growth chamber experiment. Can J Soil Sci 69:97–109

    Article  Google Scholar 

  • Marschner H (1988) Mechanisms of manganese acquisition by roots from soils. In: Graham RDR, Hanam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 191–204

    Chapter  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic

    Google Scholar 

  • Marschner H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207

    Article  Google Scholar 

  • Marschner H, Romheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Effect of soil compaction potassium and cobalt on growth and yield of moth bean. Int J Soil Sci 1:269–271

    Article  CAS  Google Scholar 

  • Medeiros CAB, Clark RB, Ellis JR (1993) Effects of MES [2(N-morpholino)-ethanesulfonic acid] and pH on mineral nutrient uptake by mycorrhizal and nonmycorrhizal maize. J Plant Nutr 16:2255–2272

    Article  CAS  Google Scholar 

  • Merckx R, Sinnaeve J, Van Ginkel JH, Cremers A (1983) The effect of growing plant roots on the speciation of Co-60, Zn-65, Mn-54 and Fe-59 in the rhizosphere. In: Proceedings of the seminar on the transfer of radioactive materials in the terrestrial environment subsequent to an accidental release to atmosphere, Commission of the European Communities, Luxembourg 1, pp 275–288

    Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318

    Article  CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2003) Mycorrhizal effectiveness and manganese toxicity in soybean as affected by soil type and endophyte. Sci Agric 60:329–335

    Article  CAS  Google Scholar 

  • Ortas I (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish J Agric Res 8:116–122

    Article  Google Scholar 

  • Ortas I (2012) Mycorrhiza in citrus: growth and nutrition. In: Srivastava AK (ed) Advances in citrus nutrition. Springer, Dordrecht

    Google Scholar 

  • Ortas I, Akpinar C (2006) Response of kidney bean to arbuscular mycorrhizal inoculation and mycorrhizal dependency in P and Zn deficient soils. Acta Agric Scand 56:101–109

    CAS  Google Scholar 

  • Pacovsky RS, Fuller G (1988) Mineral and lipid composition of Glycine, Glomus, Bradyrhizobium symbiosis. Physiol Plant 72:733–746

    Article  CAS  Google Scholar 

  • Pacovsky RS, Bethlenfalvay GJ, Paul EA (1986) Comparison between P-fertilized and mycorrhizal plants. Crop Sci 26:151–156

    Article  Google Scholar 

  • Posta K, Marschner H, Römheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5:119–124

    Article  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Af. J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-Mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    Article  CAS  Google Scholar 

  • Ramakrishnan K, Selvakumar G (2012) Influence of AM fungi on plant growth and nutrient content of Tomato (Lycopersicum esculentum Mill.) Int J Res Bot 2:24–26

    Google Scholar 

  • Rhode LH, Gerdemann JW (1978) Translocation of calcium and phosphate by external hyphae of vesicular-mycorrhizae. Soil Sci 126:125

    Article  Google Scholar 

  • Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561

    Article  Google Scholar 

  • Sanders IR, Fitter AH (1992) The ecology and functioning of vesicular arbuscular mycorrhizas in coexisting grassland species. New Phytol 120:525–533

    Article  CAS  Google Scholar 

  • Schreiner RP (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot Noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215

    Article  Google Scholar 

  • Schwab SM, Menge JA, Leonhard RT (1983) Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass in relation to vesicular–arbuscular mycorrhiza formation. Plant Physiol 73:761–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seres A, Bakonyi G, Posta K (2006) Zn uptake by maize under the influence of AM fungi and Collembola Folsomia candida. Ecol Res 21:692–697

    Article  CAS  Google Scholar 

  • Sharma AK, Srivastava PC, Johri BN (1994) Contribution of VA mycorrhiza to zinc uptake in plants. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis Publishers, Boca Raton, pp 111–123

    Google Scholar 

  • Simwambana MCM, Ekanayake IJ (2001) Plant biology 2001, Plant biology abstracts no 0490. http://www.Ryconuba.com/as

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego, p 605

    Google Scholar 

  • Sparrow L, Uren NC (1987) Oxidation and reduction of Mn in acidic soils: effect of temperature and soil pH. Soil Biol Biochem 19:143–148

    Article  CAS  Google Scholar 

  • Tandon HLS (2001) Management of nutrient interactions in agriculture. Fertilizer Development and Consultation Organization, New Delhi, p 142

    Google Scholar 

  • Tinker PBH (1975) Effects of vesicular-arbuscular mycorrhizas on higher plants. In: Jennings DG, Lee DL (eds) Symbiosis 29th Symp Soc exp Biol. Cambridge University Press, London, p 325–349

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1993) Soil fertility and fertilizers, 5th ed. MacMillan Publishing Company, New York, p 486

    Google Scholar 

  • Tisdall JM, Oades JM (1979) Stabilization of soil aggregates by the systems of rye grass. Aust J Soil Res 17:429–441

    Article  Google Scholar 

  • Toler HD, Morton JD, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172

    Article  CAS  Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993) Elemental localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn. collected from experimental plots treated with Cd dust. New Phytol 123:313–324

    Article  CAS  Google Scholar 

  • Val J, Monge E, Heras L, Javier A (1987) Changes in photosynthetic pigment composition in higher plants as affected by nutrition status. J Plant Nutr 10:995–2001

    Article  CAS  Google Scholar 

  • Vivas A, Brio B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 62:1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Li X, Zhou J, Wang G, Dong Y (2008) Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun Soil Sci Plant Anal 39:499–509

    Article  Google Scholar 

  • White JA, Brown MF (1979) Ultrastructural and X-ray analysis of phosphorus granules in a vesicular arbuscular mycorrhizal fungus. Can J Bot 57:2812–2818

    Article  CAS  Google Scholar 

  • Whitefield L, Richards RJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonization in Thymus polytrichus in northern England. Mycorrhiza 14:55–62

    Article  Google Scholar 

  • Wu Z, Ren H, Mc Grath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano-Melo AM, Maia LC, Saggin JR, Lima-Filho JM, Melo NF (1999) Effect of arbuscular mycorrhizal fungi on the acclimatization of micro propagated banana plantlets. Mycorrhiza 9:119–123

    Article  CAS  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agri Ecosyst Environ 95:343–348

    Article  Google Scholar 

  • Zaefarian F, Rezvani M, Rejali F, Ardakani MR, Noormohammadi G (2011) Effect of heavy metals and Arbuscular mycorrhizal fungal on growth and nutrients (N, P, K, Zn, Cu and Fe) accumulation of alfalfa (Medicago sativa L.) Am-Eurasian J Agric Environ Sci 11:346–352

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kullaiyan Sathiyadash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sathiyadash, K., Rajendran, K., Karthikeyan, V., Muthukumar, T. (2017). Modulation of Plant Micronutrient Uptake by Arbuscular Mycorrhizal Fungi. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_14

Download citation

Publish with us

Policies and ethics