Skip to main content

Noncoding RNAs in Regulation of Cancer Metabolic Reprogramming

  • Chapter
  • First Online:
The Long and Short Non-coding RNAs in Cancer Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 927))

Abstract

Since the description of the Warburg effect 90 years ago, metabolic reprogramming has been gradually recognized as a major hallmark of cancer cells. Mounting evidence now indicates that cancer is a kind of metabolic disease, quite distinct from conventional perception. While metabolic alterations in cancer cells have been extensively observed in glucose, lipid, and amino acid metabolisms, its underlying regulatory mechanisms are still poorly understood. Noncoding RNA, also known as the “dark matter in life,” functions through various mechanisms at RNA level regulating different biological pathways. The last two decades have witnessed the booming of noncoding RNA study on microRNA (miRNA), long noncoding RNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), etc. In this chapter, we will discuss the regulatory roles of noncoding RNAs on cancer metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

G6P:

Glucose-6-phosphate

3PG:

3-Phosphoglucerate

PEP:

Phosphoenolpyruvate

Pyr:

Pyruvate

Lac:

Lactate

Ac-CoA:

Acetyl-CoA

Cit:

Citrate

α-KG:

α-Ketoglutarate

Glu:

Glutamine

Pro:

Proline

BCAAs:

Branched-chain amino acids

HMG-CoA:

3-Hydroxy-3-methylglutaryl-coenzyme A

MVA:

Mevalonic acid

IPP:

Isopentenyl pyrophosphate

SE:

Squalene epoxide

Chol:

Cholesterol

7-DHC:

7-Dehydrocholesterol

IGF1-R:

Insulin-like growth factor 1 receptor

GLUTs:

Glucose transporters

G6PC:

Glucose-6-phosphatase

HK2:

Hexokinase 2

G6PD:

Glucose-6-phosphate dehydrogenase

PKM2:

Pyruvate kinase M2

LDHA:

Lactate dehydrogenase A

PDK1:

Pyruvate dehydrogenase kinase 1

PDH:

Pyruvate dehydrogenase

ACLY:

ATP citrate lyase

FASN:

Fatty acid synthase

HMGCS1:

3-Hydroxy-3-methylglutaryl-CoA synthase 1

HMGCR:

3-Hydroxy-3-methylglutaryl-CoA reductase

DHCR7:

7-Dehydrocholesterol reductase

CPT1A:

Carnitine palmitoyltransferase 1A

GLS:

Glutaminase

POX:

Proline dehydrogenase

DBT:

Dihydrolipoyl branched-chain acyltransferase

SQLE:

Squalene epoxidase

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  4. Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem. 2007;101:937–49.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang HF, Qian DZ, Tan YS, et al. Digoxin and other cardiac glycosides inhibit HIF-1 alpha synthesis and block tumor growth. Proc Natl Acad Sci U S A. 2008;105:19579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351–9.

    Article  CAS  PubMed  Google Scholar 

  7. Comerford SA, Huang Z, Du X, et al. Acetate dependence of tumors. Cell. 2014;159:1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyssiotis CA, Cantley LC. Acetate fuels the cancer engine. Cell. 2014;159:1492–4.

    Article  CAS  PubMed  Google Scholar 

  9. Mashimo T, Pichumani K, Vemireddy V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27:57–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009;92:329–33.

    Article  CAS  PubMed  Google Scholar 

  12. Tonjes M, Barbus S, Park YJ, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19:901–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–7.

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2015;73(2):377–92.

    Article  PubMed  CAS  Google Scholar 

  15. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123:3664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hardie DG, Alessi DR. LKB1 and AMPK and the cancer-metabolism link – ten years after. BMC Biol. 2013. doi:10.1186/1741-7007-11-36.

    PubMed  PubMed Central  Google Scholar 

  17. Dang CV. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:369–74.

    Article  CAS  PubMed  Google Scholar 

  18. Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009;15:6479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yeung SJ, Pan J, Lee MH. Roles of p53, Myc and HIF-1 in regulating glycolysis – the seventh hallmark of cancer. Cell Mol Life Sci. 2008;65:3981–99.

    Article  CAS  PubMed  Google Scholar 

  21. Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19:12–6.

    Article  CAS  PubMed  Google Scholar 

  22. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kruiswijk F, Labuschagne CF, Vousden KH. P53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16:393–405.

    Article  CAS  PubMed  Google Scholar 

  24. Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays. 2003;25:930–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mattick JS. The hidden genetic program of complex organisms. Sci Am. 2004;291:60–7.

    Article  PubMed  Google Scholar 

  26. Heinrichs A. MicroRNAs get a boost. Nat Rev Mol Cell Biol. 2009;10:302.

    PubMed  Google Scholar 

  27. Baumann K. Gene expression: RNAi as a global transcriptional activator. Nat Rev Mol Cell Biol. 2014;15:298.

    Article  PubMed  CAS  Google Scholar 

  28. Dillon CP, Sandy P, Nencioni A, et al. RNAI as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol. 2005;67:147–73.

    Article  CAS  PubMed  Google Scholar 

  29. Ross RJ, Weiner MM, Lin HF. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;505:353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sato K, Siomi MC. Piwi-interacting RNAs: biological functions and biogenesis. Essays Biochem. 2013;54:39–52.

    Article  CAS  PubMed  Google Scholar 

  31. Weick EM, Miska EA. PiRNAs: from biogenesis to function. Development. 2014;141:3458–71.

    Article  CAS  PubMed  Google Scholar 

  32. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10:126–39.

    Article  CAS  PubMed  Google Scholar 

  33. Batista PJ, Chang HY. Long non-coding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonasio R, Shiekhattar R. Regulation of transcription by long non-coding RNAs. Annu Rev Genet. 2014;48:433–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liz J, Esteller M. LncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta. 2016;1859(1):169–76. doi:10.1016/j.

    Article  CAS  PubMed  Google Scholar 

  36. Fu XD. Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev. 2014;1:190–204.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kugel JF, Goodrich JA. Non-coding RNAs: key regulators of mammalian transcription. Trends Biochem Sci. 2012;37:144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mondal T, Kanduri C. Maintenance of epigenetic information: a non-coding RNA perspective. Chromosom Res. 2013;21:615–25.

    Article  CAS  Google Scholar 

  39. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  40. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  41. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  42. Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  43. Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  CAS  PubMed  Google Scholar 

  46. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hatley ME, Patrick DM, Garcia MR, et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 2010;18:282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Faraoni I, Antonetti FR, Cardone J, et al. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792:497–505.

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chan B, Manley J, Lee J, et al. The emerging roles of microRNAs in cancer metabolism. Cancer Lett. 2015;356:301–8.

    Article  CAS  PubMed  Google Scholar 

  52. Pulito C, Donzelli S, Muti P, et al. MicroRNAs and cancer metabolism reprogramming: the paradigm of metformin. Ann Transl Med. 2014;2:58.

    PubMed  PubMed Central  Google Scholar 

  53. Zhao XY, Lin JD. Long non-coding RNAs: a new regulatory code in metabolic control. Trends Biochem Sci. 2015;40:586–96.

    Article  CAS  PubMed  Google Scholar 

  54. Chen B, Li H, Zeng X, et al. Roles of microRNA on cancer cell metabolism. J Transl Med. 2012;10:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chow TF, Mankaruos M, Scorilas A, et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183:743–51.

    Article  CAS  PubMed  Google Scholar 

  56. Lefebvre P, Staels B. SREBF2-embedded mir33 links the nuclear bile acid receptor FXR to cholesterol and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2015;35:748–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ono K, Horie T, Nishino T, et al. MicroRNA-33a/b in lipid metabolism - novel “thrifty” models. Circ J. 2015;79:278–84.

    Article  PubMed  Google Scholar 

  58. Lo TF, Tsai WC, Chen ST. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS ONE. 2013;8:e75628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haemmerle M, Gutschner T. Long non-coding RNAs in cancer and development: where do we go from here? Int J Mol Sci. 2015;16:1395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karapetyan AR, Buiting C, Kuiper RA, et al. Regulatory roles for long ncRNA and mRNA. Cancers. 2013;5:462–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang F, Zhang H, Mei Y, et al. Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53:88–100.

    Article  CAS  PubMed  Google Scholar 

  63. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101.

    Article  CAS  PubMed  Google Scholar 

  64. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21:4663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell. 2011;43:892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.

    Article  CAS  PubMed  Google Scholar 

  70. Ketting RF, Fischer SEJ, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C-elegans. Genes Dev. 2001;15:2654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36:1224–31.

    Article  CAS  PubMed  Google Scholar 

  72. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs down-regulate large numbers of target mRNAs. Nature. 2005;433:769–73.

    Article  CAS  PubMed  Google Scholar 

  73. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012;23:352–61.

    Article  CAS  PubMed  Google Scholar 

  74. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  75. Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer. 2014;120:774–80.

    Article  PubMed  Google Scholar 

  76. Upadhyay M, Samal J, Kandpal M, et al. The Warburg effect: insights from the past decade. Pharmacol Ther. 2013;137:318–30.

    Article  CAS  PubMed  Google Scholar 

  77. Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin. 2013;45:18–26.

    Article  CAS  PubMed  Google Scholar 

  78. Yu C, Xue J, Zhu W, et al. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumour Biol. 2015;36:81–94.

    Article  CAS  PubMed  Google Scholar 

  79. Sun L, He X, Cao Y, et al. MicroRNAs and energy metabolism in cancer cells. In: Sadegh B, editor. MicroRNAs: key regulators of oncogenesis. Switzerland: Springer; 2014. p. 83–95.

    Chapter  Google Scholar 

  80. Wang B, Sun F, Dong N, et al. MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas. Diagn Pathol. 2014;9:211. doi:10.1186/s13000-014-0211-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Fu XH, Dong BN, Tian Y, et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Investig. 2015;125:2497–509.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jordan SD, Kruger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 2011;13:434–46.

    Article  CAS  PubMed  Google Scholar 

  83. Fang R, Xiao T, Fang Z, et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem. 2012;287:23227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.

    Article  CAS  PubMed  Google Scholar 

  85. Burant CF, Bell GI. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Biochemistry. 1992;31:10414–20.

    Article  CAS  PubMed  Google Scholar 

  86. Horie T, Ono K, Nishi H, et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Bioph Res Commun. 2009;389:315–20.

    Article  CAS  Google Scholar 

  87. Joost HG, Bell GI, Best JD, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282:E974–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ramirez CM, Goedeke L, Rotllan N, et al. MicroRNA 33 regulates glucose metabolism. Mol Cell Biol. 2013;33:2891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Busk M, Horsman MR, Jakobsen S, et al. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging. 2008;35:2294–303.

    Article  CAS  PubMed  Google Scholar 

  90. Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11:2785–808.

    Article  CAS  PubMed  Google Scholar 

  91. Kuehne A, Emmert H, Soehle J, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 2015;59:359–71.

    Article  CAS  PubMed  Google Scholar 

  92. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao P. MicroRNAs and cancer metabolism. In: Cho WCS, editor. MicroRNAs in cancer translational research. Switzerland: Springer; 2011. p. 485–97.

    Chapter  Google Scholar 

  94. Gregersen LH, Jacobsen A, Frankel LB, et al. MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer. 2012;12:232.

    Article  CAS  PubMed  Google Scholar 

  95. Peschiaroli A, Giacobbe A, Formosa A, et al. MiR-143 regulates hexokinase 2 expression in cancer cells. Oncogene. 2013;32:797–802.

    Article  CAS  PubMed  Google Scholar 

  96. Fong MY, Zhou WY, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luan WK, Wang YY, Chen XC, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget. 2015;6:13006–18.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chen B, Liu YL, Jin XW, et al. MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer. 2014;14:443. doi:10.1186/1471-2407-14-443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is down-regulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3 zeta. Cancer Res. 2010;70:2339–49.

    Article  CAS  PubMed  Google Scholar 

  100. Kaller M, Liffers ST, Oeljeklaus S, et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10(8):M111.010462. doi:10.1074/mcp.M111.010462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kim HR, Roe JS, Lee JE, et al. P53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun. 2013;437:225–31.

    Article  CAS  PubMed  Google Scholar 

  102. Uesugi A, Kozaki K, Tsuruta T, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71:5765–78.

    Article  CAS  PubMed  Google Scholar 

  103. Godlewski J, Nowicki MO, Bronisz A, et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37:620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ma X, Li C, Sun L, et al. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun. 2014;5:5212.

    Article  CAS  PubMed  Google Scholar 

  105. Medes G, Thomas A, Weinhouse S. Nutritional factors in fatty acid synthesis by tissue slices in vitro. J Biol Chem. 1952;197:181–91.

    CAS  PubMed  Google Scholar 

  106. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610–23.

    Article  CAS  PubMed  Google Scholar 

  107. Ameer F, Scandiuzzi L, Hasnain S, et al. De novo lipogenesis in health and disease. Metabolism. 2014;63:895–902.

    Article  CAS  PubMed  Google Scholar 

  108. Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang CF, Freter C. Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci. 2015;16:924–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fernandez-Hernando C, Suarez Y, Rayner KJ, et al. MicroRNAs in lipid metabolism. Curr Opin Lipidol. 2011;22:86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50:S138–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Davalos A, Goedeke L, Smibert P, et al. MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108:9232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rottiers V, Najafi-Shoushtari SH, Kristo F, et al. MicroRNAs in metabolism and metabolic diseases. Cold Spring Harb Symp Quant Biol. 2011;76:225–33.

    Article  CAS  PubMed  Google Scholar 

  114. Tao R, Xiong X, DePinho RA, et al. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res. 2013;54:2745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. El Azzouzi H, Leptidis S, Dirkx E, et al. The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab. 2013;18:341–54.

    Article  PubMed  CAS  Google Scholar 

  116. Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab. 2012;23:65–72.

    Article  CAS  PubMed  Google Scholar 

  117. Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab. 2012;16:414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shimano H. SREBPs: physiology and pathophysiology of the SREBP family. FEBS J. 2009;276:616–21.

    Article  CAS  PubMed  Google Scholar 

  119. Soyal SM, Nofziger C, Dossena S, et al. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci. 2015;36:406–16.

    Article  CAS  PubMed  Google Scholar 

  120. Contreras AV, Torres N, Tovar AR. PPAR-alpha as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4:439–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao J, Yuan S, Jin J, et al. PPARalpha regulates tumor progression, foe or friend? Eur J Pharmacol. 2015;765:560–4.

    Article  CAS  PubMed  Google Scholar 

  122. Li TG, Chiang JYL. Regulation of bile acid and cholesterol metabolism by PPARs. Dig PPAR Res. 2009. doi:10.1155/2009/501739.

    Google Scholar 

  123. Li TG, Chiang JYL. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66:948–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koszowska AU, Nowak J, Dittfeld A, et al. Obesity, adipose tissue function and the role of vitamin D. Cen Eur J Immunol. 2014;39:260–4.

    Article  CAS  Google Scholar 

  125. Lefebvre P, Staels B. SREBF2-embedded mir33 links the nuclear bile acid receptor FXR to cholesterol and lipoprotein metabolism. Arterioscl Throm Vasc Biol. 2015;35:748–9.

    Article  CAS  Google Scholar 

  126. DiMarco DM, Fernandez ML. The regulation of reverse cholesterol transport and cellular cholesterol homeostasis by microRNAs. Biology. 2015;4:494–511.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Annema W, Tietge UJ. Regulation of reverse cholesterol transport – a comprehensive appraisal of available animal studies. Nutr Metab. 2012;9:25.

    Article  CAS  Google Scholar 

  128. Hill SA, McQueen MJ. Reverse cholesterol transport-a review of the process and its clinical implications. Clin Biochem. 1997;30:517–25.

    Article  CAS  PubMed  Google Scholar 

  129. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  CAS  Google Scholar 

  130. Rotllan N, Fernandez-Hernando C. MicroRNA regulation of cholesterol metabolism. Cholesterol. 2012;2012:847849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328:1566–9.

    Article  CAS  PubMed  Google Scholar 

  132. Rayner KJ, Suarez Y, Davalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Niesor EJ, Schwartz GG, Perez A, et al. Statin-induced decrease in ATP-binding cassette transporter A1 expression via microRNA33 induction may counteract cholesterol efflux to high-density lipoprotein. Cardiovasc Drugs Ther. 2015;29:7–14.

    Article  CAS  PubMed  Google Scholar 

  134. Kim J, Yoon H, Ramirez CM, et al. MiR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neurol. 2012;235:476–83.

    Article  CAS  PubMed  Google Scholar 

  135. Ramirez CM, Davalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscl Throm Vasc Biol. 2011;31:2707–14.

    Article  CAS  Google Scholar 

  136. Han CC, Wei SH, He F, et al. The regulation of lipid deposition by insulin in goose liver cells is mediated by the PI3K-AKT-mTOR signaling pathway. PLoS ONE. 2015;10(5):e0098759. doi:10.1371/journal.pone.0098759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Hsieh YC, Chen YM, Li CY, et al. To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-Akt-mTOR-HIF1alpha pathway. Dev Comp Immunol. 2015;53:85–95.

    Article  CAS  PubMed  Google Scholar 

  138. Li J, Huang Q, Long X, et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARalpha pathways. J Hepatol. 2015;63(6):1378–89.

    Article  CAS  PubMed  Google Scholar 

  139. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.

    CAS  PubMed  Google Scholar 

  140. Dobrzyn P, Jazurek M, Dobrzyn A. Stearoyl-CoA desaturase and insulin signaling-what is the molecular switch? Biochim Biophys Acta. 2010;1797:1189–94.

    Article  CAS  PubMed  Google Scholar 

  141. Krycer JR, Sharpe LJ, Luu W, et al. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab. 2010;21:268–76.

    Article  CAS  PubMed  Google Scholar 

  142. Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8:224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Teran-Garcia M, Adamson AW, Yu G, et al. Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. Biochem J. 2007;402:591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Deberardinis RJ, Lum JJ, Thompson CB, et al. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem. 2006;281:37372–80.

    Article  CAS  PubMed  Google Scholar 

  145. Schlaepfer IR, Rider L, Rodrigues LU, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther. 2014;13:2361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. Bio Med Res Int. 2014;2014:741465.

    Google Scholar 

  147. Vinciguerra M, Carrozzino F, Peyrou M, et al. Unsaturated fatty acids promote hepatoma proliferation and progression through down-regulation of the tumor suppressor PTEN. J Hepatol. 2009;50:1132–41.

    Article  CAS  PubMed  Google Scholar 

  148. Lee J, Hong SW, Park SE, et al. AMP-activated protein kinase suppresses the expression of LXR/SREBP-1 signaling-induced ANGPTL8 in HepG2 cells. Mol Cell Endocrinol. 2015;414:148–55.

    Article  CAS  PubMed  Google Scholar 

  149. Fernandez-Hernando C, Ramirez CM, Goedeke L, et al. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013;33:178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zheng Y, Jiang S, Zhang Y, et al. Detection of miR-33 expression and the verification of its target genes in the fatty liver of geese. Int J Mol Sci. 2015;16:12737–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gao P, Tchernyshyov I, Chang TC, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rathore MG, Saumet A, Rossi JF, et al. The NF-kappa B member p65 controls glutamine metabolism through miR-23a. Int J Biochem Cell Biol. 2012;44:1448–56.

    Article  CAS  PubMed  Google Scholar 

  153. Liu W, Le A, Hancock C, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012;109:8983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu YM, Borchert GL, Donald SP, et al. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 2009;69:6414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Phang JM, Liu W, Zabirnyk O. Proline metabolism and microenvironmental stress. Annu Rev Nutr. 2010;30:441–63.

    Article  CAS  PubMed  Google Scholar 

  156. Koning T, Fuchs F, Klomp L. Serine, glycine, and threonine. In: Lajtha A, editor. Handbook of neurochemistry and molecular neurobiology-amino acids and peptides in the nervous system. 3rd ed. Berlin: Springer; 2007. p. 23–45.

    Chapter  Google Scholar 

  157. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tedeschi PM, Markert EK, Gounder M, et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 2013;4, e877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lu SC, Mato JM. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol. 2008;23(Supplement s1):S73–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Avila MA, Berasain C, Torres L, et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol. 2000;33:907–14.

    Article  CAS  PubMed  Google Scholar 

  161. Cai J, Sun WM, Hwang JJ, et al. Changes in S-adenosylmethionine synthetase in human liver cancer: molecular characterization and significance. Hepatology. 1996;24:1090–7.

    Article  CAS  PubMed  Google Scholar 

  162. Frau M, Tomasi ML, Simile MM, et al. Role of transcriptional and posttranscriptional regulation of methionine adenosyltransferases in liver cancer progression. Hepatology. 2012;56:165–75.

    Article  CAS  PubMed  Google Scholar 

  163. Wang W, Peng JX, Yang JQ, et al. Identification of gene expression profiling in hepatocellular carcinoma using cDNA microarrays. Dig Dis Sci. 2009;54:2729–35.

    Article  CAS  PubMed  Google Scholar 

  164. Yang HP, Cho ME, Li TWH, et al. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J Clin Investig. 2013;123:285–98.

    Article  CAS  PubMed  Google Scholar 

  165. Lo TF, Tsai WC, Chen ST. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS ONE. 2013;8(9):883–8.

    Article  CAS  Google Scholar 

  166. Koturbash I, Melnyk S, James SJ, et al. Role of epigenetic and miR-22 and miR-29b alterations in the down-regulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog. 2013;52:318–27.

    Article  CAS  PubMed  Google Scholar 

  167. Stone N, Pangilinan F, Molloy AM, et al. Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes. PLoS ONE. 2011;6:e21851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu S, Lucas KJ, Roy S, et al. Mosquito-specific microRNA-1174 targets serine hydroxymethyltransferase to control key functions in the gut. Proc Natl Acad Sci U S A. 2014;111:14460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shimomura Y, Murakami T, Nagasaki M, et al. Regulation of branched-chain amino acid metabolism and pharmacological effects of branched-chain amino acids. Hepatol Res. 2004;30S:3–8.

    Article  PubMed  CAS  Google Scholar 

  170. Shimomura Y, Murakami T, Nakai N, et al. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134:1583S–7.

    CAS  PubMed  Google Scholar 

  171. Kimball SR. Regulation of global and specific mRNA translation by amino acids. J Nutr. 2002;132:883–6.

    CAS  PubMed  Google Scholar 

  172. Yudkoff M. Brain metabolism of branched-chain amino acids. Glia. 1997;21:92–8.

    Article  CAS  PubMed  Google Scholar 

  173. Mersey BD, Jin P, Danner DJ. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet. 2005;14:3371–7.

    Article  CAS  PubMed  Google Scholar 

  174. Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420:563–73.

    Article  PubMed  Google Scholar 

  175. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14:699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Roth A, Diederichs S. Rap and chirp about X inactivation. Nature. 2015;521:170–1.

    Article  CAS  PubMed  Google Scholar 

  177. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.

    Article  CAS  PubMed  Google Scholar 

  178. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.

    Article  CAS  PubMed  Google Scholar 

  179. Wilusz JE. Long non-coding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta. 2015;1859(1):128–38.

    Article  PubMed  CAS  Google Scholar 

  180. Wu XS, Wang XA, Wu WG, et al. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther. 2014;15:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhang XW, Bu P, Liu L, et al. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun. 2015;462:227–32.

    Article  CAS  PubMed  Google Scholar 

  182. He XL, Tan XM, Wang X, et al. C-Myc-activated long non-coding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol. 2014;35:12181–8.

    Article  CAS  Google Scholar 

  183. Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52:101–12.

    Article  CAS  PubMed  Google Scholar 

  184. Matouk IJ, Mezan S, Mizrahi A, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochem Biophys Acta (BBA) Mol Basis Dis. 2010;1803:443–51.

    Article  CAS  Google Scholar 

  185. Gao Y, Wu FJ, Zhou JC, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014;42:13799–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhu MJ, Chen Q, Liu X, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281:3766–75.

    Article  CAS  PubMed  Google Scholar 

  187. Li ZK, Li X, Wu SZ, et al. Long non-coding RNA UCA1 promotes glycolysis by up-regulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 2014;105:951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochem Biophys Acta (BBA) Mol Basis Dis. 2014;1843:372–86.

    Article  CAS  Google Scholar 

  189. Hammerle M, Gutschner T, Uckelmann H, et al. Posttranscriptional destabilization of the liver-specific long non-coding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology. 2013;58:1703–12.

    Article  PubMed  CAS  Google Scholar 

  190. Liu BD, Sun LJ, Liu Q, et al. A cytoplasmic NF-kappa B interacting long non-coding RNA blocks I kappa B phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27:370–81.

    Article  CAS  PubMed  Google Scholar 

  191. Yacqub-Usman K, Pickard MR, Williams GT. Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate. 2015;75:693–705.

    Article  CAS  PubMed  Google Scholar 

  192. Hung CL, Wang LY, Yu YL, et al. A long non-coding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci U S A. 2014;111:18697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Liu Q, Huang JG, Zhou NJ, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41:4976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang A, Xu M, Mo YY. Role of the lncRNA-p53 regulatory network in cancer. J Mol Cell Biol. 2014;6:181–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Takahashi K, Yan IK, Haga H, et al. Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci. 2014;127:1585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Aravin AA, Chan DC. PiRNAs meet mitochondria. Dev Cell. 2011;20:287–8.

    Article  CAS  PubMed  Google Scholar 

  197. Mannoor K, Liao JP, Jiang F. Small nucleolar RNAs in cancer. Biochim Biophys Acta. 2012;1826:121–8.

    CAS  PubMed  Google Scholar 

  198. Stepanov GA, Filippova JA, Komissarov AB, et al. Regulatory role of small nucleolar RNAs in human diseases. Dig Biomed Res Int. 2015. doi:10.1155/2015/206849.

    Google Scholar 

  199. Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 2012;3:397–414.

    Article  CAS  PubMed  Google Scholar 

  200. Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine-pseudouridylation. RNA Biol. 2014;11:1483–94.

    Article  PubMed  Google Scholar 

  201. Jinn S, Brandis KA, Ren A, et al. SnoRNA U17 regulates cellular cholesterol trafficking. Cell Metab. 2015;21:855–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73:3852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20:1829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Vicens Q, Westhof E. Biogenesis of circular RNAs. Cell. 2014;159:13–4.

    Article  CAS  PubMed  Google Scholar 

  205. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73:5609–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Basic Key Research Program of China (2014CB910600), National Science Foundation of China (31372148, 81530076, 31571472), Chinese Academy of Sciences (XDA01010404), and Research Fund for the Doctoral Program of Higher Education of China (2133402110014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yang, D., Sun, L., Li, Z., Gao, P. (2016). Noncoding RNAs in Regulation of Cancer Metabolic Reprogramming. In: Song, E. (eds) The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-10-1498-7_7

Download citation

Publish with us

Policies and ethics