Skip to main content

Relationship Between Noncoding RNA Dysregulation and Epigenetic Mechanisms in Cancer

  • Chapter
  • First Online:
The Long and Short Non-coding RNAs in Cancer Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 927))

Abstract

Epigenetic alterations, including aberrant DNA methylation and histone modification, play key roles in the dysregulation of tumor-related genes, thereby affecting numerous cellular processes, including cell proliferation, cell adhesion, apoptosis, and metastasis. In recent years, studies have demonstrated that short and long noncoding RNAs (ncRNAs) are key players in the initiation and progression of cancer, and epigenetic mechanisms are deeply involved in their dysregulation. Indeed, the growing list of microRNA (miRNA) genes aberrantly methylated in cancer suggests that a large number of miRNAs act as tumor suppressors or oncogenes. In addition, emerging evidence suggests that dysregulation of long ncRNAs (lncRNAs) plays critical roles in tumorigenesis. And because ncRNAs are involved in regulating gene expression through interaction with epigenetic modifiers, their dysregulation appears causally related to epigenetic alterations in cancer. Dissection of the interrelationships between ncRNAs and epigenetic alterations has the potential to reveal novel approaches to the diagnosis and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74. doi:10.1038/nrg3074.

    Article  CAS  PubMed  Google Scholar 

  2. Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. doi:10.1038/nrc1840.

    Article  CAS  PubMed  Google Scholar 

  3. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14. doi:10.1038/nrg2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzuki H, Takatsuka S, Akashi H, et al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res. 2011;71(17):5646–58. doi:10.1158/0008-5472.CAN-11-1076.

    Article  CAS  PubMed  Google Scholar 

  5. Datta J, Kutay H, Nasser MW, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 2008;68(13):5049–58. doi:10.1158/0008-5472.CAN-07-6655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lujambio A, Calin GA, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105(36):13556–61. doi:10.1073/pnas.0803055105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kitano K, Watanabe K, Emoto N, et al. CpG island methylation of microRNAs is associated with tumor size and recurrence of non-small-cell lung cancer. Cancer Sci. 2011;102(12):2126–31. doi:10.1111/j.1349-7006.2011.02101.x.

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann U, Hasemeier B, Christgen M, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol. 2008;214(1):17–24. doi:10.1002/path.2251.

    Article  CAS  PubMed  Google Scholar 

  9. Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125(11):2737–43. doi:10.1002/ijc.24638.

    Article  CAS  PubMed  Google Scholar 

  10. Hildebrandt MA, Gu J, Lin J, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29(42):5724–8. doi:10.1038/onc.2010.305.

    Article  CAS  PubMed  Google Scholar 

  11. Tsai KW, Liao YL, Wu CW, et al. Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics. 2011;6(10):1189–97. doi:10.4161/epi.6.10.16535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodriguez-Otero P, Roman-Gomez J, Vilas-Zornoza A, et al. Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. Br J Haematol. 2011;155(1):73–83. doi:10.1111/j.1365-2141.2011.08812.x.

    Article  CAS  PubMed  Google Scholar 

  13. Hsu PY, Deatherage DE, Rodriguez BA, et al. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res. 2009;69(14):5936–45. doi:10.1158/0008-5472.CAN-08-4914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang LQ, Kwong YL, Kho CS, et al. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia-implications on constitutive activation of NFkappaB pathway. Mol Cancer. 2013;12:173. doi:10.1186/1476-4598-12-173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kim K, Lee HC, Park JL, et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics. 2011;6(6):740–51.

    Article  CAS  PubMed  Google Scholar 

  16. Lin PC, Chiu YL, Banerjee S, et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res. 2013;73(3):1232–44. doi:10.1158/0008-5472.CAN-12-2968.

    Article  CAS  PubMed  Google Scholar 

  17. Augoff K, McCue B, Plow EF, Sossey-Alaoui K. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012;11:5. doi:10.1186/1476-4598-11-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toyota M, Suzuki H, Sasaki Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32. doi:10.1158/0008-5472.CAN-08-0325.

    Article  CAS  PubMed  Google Scholar 

  19. Roman-Gomez J, Agirre X, Jimenez-Velasco A, et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol. 2009;27(8):1316–22. doi:10.1200/JCO.2008.19.3441.

    Article  CAS  PubMed  Google Scholar 

  20. Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki H, Yamamoto E, Nojima M, et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis. 2010;31(12):2066–73. doi:10.1093/carcin/bgq203.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Chen Z, Gao Y, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage non-small cell lung cancer. Cancer Biol Ther. 2011;11(5):490–6. doi:10.4161/cbt.11.5.14550.

    Article  CAS  PubMed  Google Scholar 

  23. Vogt M, Munding J, Gruner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 2011;458(3):313–22. doi:10.1007/s00428-010-1030-5.

    Article  PubMed  Google Scholar 

  24. Chen X, Hu H, Guan X, et al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int J Cancer. 2012;130(7):1607–13. doi:10.1002/ijc.26171.

    Article  CAS  PubMed  Google Scholar 

  25. Kubo T, Toyooka S, Tsukuda K, et al. Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res. 2011;17(15):4965–74. doi:10.1158/1078-0432.CCR-10-3040.

    Article  CAS  PubMed  Google Scholar 

  26. Mazar J, Khaitan D, DeBlasio D, et al. Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One. 2011;6(9):e24922. doi:10.1371/journal.pone.0024922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong KY, Yim RL, So CC, et al. Epigenetic inactivation of the MIR34B/C in multiple myeloma. Blood. 2011;118(22):5901–4. doi:10.1182/blood-2011-06-361022.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe K, Emoto N, Hamano E, et al. Genome structure-based screening identified epigenetically silenced microRNA associated with invasiveness in non-small-cell lung cancer. Int J Cancer. 2012;130(11):2580–90. doi:10.1002/ijc.26254.

    Article  CAS  PubMed  Google Scholar 

  29. Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424–9. doi:10.1158/0008-5472.CAN-06-4218.

    Article  CAS  PubMed  Google Scholar 

  30. Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69(10):4443–53. doi:10.1158/0008-5472.CAN-08-4025.

    Article  CAS  PubMed  Google Scholar 

  31. Ando T, Yoshida T, Enomoto S, et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer. 2009;124(10):2367–74. doi:10.1002/ijc.24219.

    Article  CAS  PubMed  Google Scholar 

  32. Furuta M, Kozaki KI, Tanaka S, et al. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31(5):766–76. doi:10.1093/carcin/bgp250.

    Article  CAS  PubMed  Google Scholar 

  33. Wang P, Chen L, Zhang J, et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. 2014;33(4):514–24. doi:10.1038/onc.2012.598.

    Article  CAS  PubMed  Google Scholar 

  34. Wilting SM, van Boerdonk RA, Henken FE, et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 2010;9:167. doi:10.1186/1476-4598-9-167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang Y, Yan LX, Wu QN, et al. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res. 2011;71(10):3552–62. doi:10.1158/0008-5472.CAN-10-2435.

    Article  CAS  PubMed  Google Scholar 

  36. Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with down-regulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9(6):435–43. doi:10.1016/j.ccr.2006.04.020.

    Article  CAS  PubMed  Google Scholar 

  37. Huang YW, Liu JC, Deatherage DE, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 2009;69(23):9038–46. doi:10.1158/0008-5472.CAN-09-1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen R, Pan S, Qi S, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun. 2010;394(4):1047–52. doi:10.1016/j.bbrc.2010.03.121.

    Article  CAS  PubMed  Google Scholar 

  39. Lu CY, Lin KY, Tien MT, et al. Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes Chromosomes Cancer. 2013;52(7):636–43. doi:10.1002/gcc.22059.

    CAS  PubMed  Google Scholar 

  40. Zhang S, Hao J, Xie F, et al. Down-regulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis. 2011;32(8):1183–9. doi:10.1093/carcin/bgr105.

    Article  CAS  PubMed  Google Scholar 

  41. Formosa A, Lena AM, Markert EK, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32(1):127–34. doi:10.1038/onc.2012.14.

    Article  CAS  PubMed  Google Scholar 

  42. Wiklund ED, Gao S, Hulf T, et al. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS ONE. 2011;6(11):e27840. doi:10.1371/journal.pone.0027840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dou L, Zheng D, Li J, et al. Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene. 2012;31(4):507–17. doi:10.1038/onc.2011.248.

    Article  CAS  PubMed  Google Scholar 

  44. Zaman MS, Chen Y, Deng G, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103(2):256–64. doi:10.1038/sj.bjc.6605742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suh SO, Chen Y, Zaman MS, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011;32(5):772–8. doi:10.1093/carcin/bgr036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Donzelli S, Mori F, Bellissimo T, et al. Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget. 2015;6(34):35183–201. doi:10.18632.

    PubMed  PubMed Central  Google Scholar 

  47. Li S, Chowdhury R, Liu F, et al. Tumor-suppressive miR148a is silenced by CpG island hypermethylation in IDH1-mutant gliomas. Clin Cancer Res. 2014;20(22):5808–22. doi:10.1158/1078-0432.CCR-14-0234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsuruta T, Kozaki K, Uesugi A, et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 2011;71(20):6450–62. doi:10.1158/0008-5472.CAN-11-0364.

    Article  CAS  PubMed  Google Scholar 

  49. Hashimoto Y, Akiyama Y, Otsubo T, et al. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis. 2010;31(5):777–84. doi:10.1093/carcin/bgq013.

    Article  CAS  PubMed  Google Scholar 

  50. Ma K, He Y, Zhang H, et al. DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression. J Biol Chem. 2012;287(8):5639–49. doi:10.1074/jbc.M111.291229.

    Article  CAS  PubMed  Google Scholar 

  51. Gao XN, Lin J, Li YH, et al. MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene. 2011;30(31):3416–28. doi:10.1038/onc.2011.62.

    Article  CAS  PubMed  Google Scholar 

  52. Lv L, Deng H, Li Y, et al. The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis. 2014;5:e1402. doi:10.1038/cddis.2014.367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davalos V, Moutinho C, Villanueva A, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene. 2012;31(16):2062–74. doi:10.1038/onc.2011.383.

    Article  CAS  PubMed  Google Scholar 

  54. Neves R, Scheel C, Weinhold S, et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes. 2010;3:219. doi:10.1186/1756-0500-3-219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ceppi P, Mudduluru G, Kumarswamy R, et al. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res. 2010;8(9):1207–16. doi:10.1158/1541-7786.MCR-10-0052.

    Article  CAS  PubMed  Google Scholar 

  56. Wiklund ED, Bramsen JB, Hulf T, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011;128(6):1327–34. doi:10.1002/ijc.25461.

    Article  CAS  PubMed  Google Scholar 

  57. Hur K, Toiyama Y, Takahashi M, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62(9):1315–26. doi:10.1136/gutjnl-2011-301846.

    Article  CAS  PubMed  Google Scholar 

  58. Tellez CS, Juri DE, Do K, et al. EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res. 2011;71(8):3087–97. doi:10.1158/0008-5472.CAN-10-3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Craig VJ, Cogliatti SB, Rehrauer H, et al. Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives Helicobacter-associated gastric lymphomagenesis. Cancer Res. 2011;71(10):3616–24. doi:10.1158/0008-5472.CAN-10-3907.

    Article  CAS  PubMed  Google Scholar 

  60. Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506. doi:10.1016/j.ccr.2008.04.018.

    Article  CAS  PubMed  Google Scholar 

  61. Wong KY, Liang R, So CC, et al. Epigenetic silencing of MIR203 in multiple myeloma. Br J Haematol. 2011;154(5):569–78. doi:10.1111/j.1365-2141.2011.08782.x.

    Article  CAS  PubMed  Google Scholar 

  62. Uesugi A, Kozaki K, Tsuruta T, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71(17):5765–78. doi:10.1158/0008-5472.CAN-11-0368.

    Article  CAS  PubMed  Google Scholar 

  63. Lei H, Zou D, Li Z, et al. MicroRNA-219-2-3p functions as a tumor suppressor in gastric cancer and is regulated by DNA methylation. PLoS One. 2013;8(4):e60369. doi:10.1371/journal.pone.0060369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Png KJ, Yoshida M, Zhang XH, et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev. 2011;25(3):226–31. doi:10.1101/gad.1974211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang JT, Wang JL, Du W, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis. 2011;32(8):1207–15. doi:10.1093/carcin/bgr114.

    Article  CAS  PubMed  Google Scholar 

  66. Kong KL, Kwong DL, Chan TH, et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut. 2012;61(1):33–42. doi:10.1136/gutjnl-2011-300178.

    Article  CAS  PubMed  Google Scholar 

  67. Mazar J, DeBlasio D, Govindarajan SS, et al. Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett. 2011;585(15):2467–76. doi:10.1016/j.febslet.2011.06.025.

    Article  CAS  PubMed  Google Scholar 

  68. Li X, Lin R, Li J. Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig Dis Sci. 2011;56(10):2849–56. doi:10.1007/s10620-011-1711-1.

    Article  CAS  PubMed  Google Scholar 

  69. Xi S, Xu H, Shan J, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest. 2013;123(3):1241–61. doi:10.1172/JCI61271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saito Y, Suzuki H, Tsugawa H, et al. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with down-regulation of Mcl-1 in human gastric cancer cells. Oncogene. 2009;28(30):2738–44. doi:10.1038/onc.2009.140.

    Article  CAS  PubMed  Google Scholar 

  71. Baer C, Oakes CC, Ruppert AS, et al. Epigenetic silencing of miR-708 enhances NF-kappaB signaling in chronic lymphocytic leukemia. Int J Cancer. 2015;137(6):1352–61. doi:10.1002/ijc.29491.

    Article  CAS  PubMed  Google Scholar 

  72. Yan H, Choi AJ, Lee BH, Ting AH. Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PLoS ONE. 2011;6(6):e20628. doi:10.1371/journal.pone.0020628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang PP, Wang XL, Zhao W, et al. DNA methylation-mediated repression of miR-941 enhances lysine (K)-specific demethylase 6B expression in hepatoma cells. J Biol Chem. 2014;289(35):24724–35. doi:10.1074/jbc.M114.567818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 2012;31(13):1609–22. doi:10.1038/onc.2011.354.

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki H, Maruyama R, Yamamoto E, Kai M. DNA methylation and microRNA dysregulation in cancer. Mol Oncol. 2012;6(6):567–78. doi:10.1016/j.molonc.2012.07.007.

    Article  CAS  PubMed  Google Scholar 

  76. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1(5):391–407. doi:10.1158/2159-8290.CD-11-0209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maruyama R, Suzuki H. Long non-coding RNA involvement in cancer. BMB Rep. 2012;45(11):604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cabili MN, Trapnell C, Goff L, Koziol M, et al. Integrative annotation of human large intergenic non-coding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27. doi:10.1101/gad.17446611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kozaki K, Imoto I, Mogi S, et al. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68(7):2094–105. doi:10.1158/0008-5472.CAN-07-5194.

    Article  CAS  PubMed  Google Scholar 

  80. Bi C, Chung TH, Huang G et al. Genome-wide pharmacologic unmasking identifies tumor suppressive microRNAs in multiple myeloma. Oncotarget, 2015;6(28):26508–18. doi:10.18632/oncotarget.4769

  81. Omura N, Li CP, Li A, et al. Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther. 2008;7(7):1146–56. doi:6208 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ke XS, Qu Y, Rostad K, et al. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One. 2009;4(3):e4687. doi:10.1371/journal.pone.0004687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Marson A, Levine SS, Cole MF, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134(3):521–33. doi:10.1016/j.cell.2008.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ozsolak F, Poling LL, Wang Z, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22(22):3172–83. doi:10.1101/gad.1706508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Baer C, Claus R, Frenzel LP, et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012;72(15):3775–85. doi:10.1158/0008-5472.CAN-12-0803.

    Article  CAS  PubMed  Google Scholar 

  86. Wong KY, So CC, Loong F, et al. Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS ONE. 2011;6(4):e19027. doi:10.1371/journal.pone.0019027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4. doi:10.1038/nature05939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bommer GT, Gerin I, Feng Y, et al. P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307. doi:10.1016/j.cub.2007.06.068.

    Article  CAS  PubMed  Google Scholar 

  89. Yu F, Jiao Y, Zhu Y, et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem. 2012;287(1):465–73. doi:10.1074/jbc.M111.280768.

    Article  CAS  PubMed  Google Scholar 

  90. Rotkrua P, Akiyama Y, Hashimoto Y, et al. MiR-9 down-regulates CDX2 expression in gastric cancer cells. Int J Cancer. 2011;129(11):2611–20. doi:10.1002/ijc.25923.

    Article  CAS  PubMed  Google Scholar 

  91. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12(3):247–56. doi:10.1038/ncb2024.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. doi:10.1038/ncb1722.

    Article  CAS  PubMed  Google Scholar 

  93. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4. doi:10.1074/jbc.C800074200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907. doi:10.1101/gad.1640608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vrba L, Jensen TJ, Garbe JC, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697. doi:10.1371/journal.pone.0008697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Balaguer F, Link A, Lozano JJ, et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 2010;70(16):6609–18. doi:0008–5472.CAN-10-0622 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen Q, Chen X, Zhang M, et al. miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci. 2011;56(7):2009–16. doi:10.1007/s10620-010-1536-3.

    Article  CAS  PubMed  Google Scholar 

  98. Shimizu T, Suzuki H, Nojima M, et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur Urol. 2013;63(6):1091–100. doi:10.1016/j.eururo.2012.11.030.

    Article  CAS  PubMed  Google Scholar 

  99. Langevin SM, Stone RA, Bunker CH, et al. MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer. 2011;117(7):1454–62. doi:10.1002/cncr.25689.

    Article  CAS  PubMed  Google Scholar 

  100. Langevin SM, Stone RA, Bunker CH, et al. MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis. 2010;31(5):864–70. doi:10.1093/carcin/bgq051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu M, Lang N, Qiu M, et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer. 2011;128(6):1269–79. doi:10.1002/ijc.25452.

    Article  CAS  PubMed  Google Scholar 

  102. Althoff K, Beckers A, Odersky A, et al. MiR-137 functions as a tumor suppressor in neuroblastoma by down-regulating KDM1A. Int J Cancer. 2013;133(5):1064–73. doi:10.1002/ijc.28091.

    Article  CAS  PubMed  Google Scholar 

  103. Szulwach KE, Li X, Smrt RD, et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol. 2010;189(1):127–41. doi:10.1083/jcb.200908151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Smrt RD, Szulwach KE, Pfeiffer RL, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010;28(6):1060–70. doi:10.1002/stem.431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Michael MZ, O’ Connor SM, van Holst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882–91.

    CAS  PubMed  Google Scholar 

  106. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. doi:10.1158/0008-5472.CAN-05-1783.

    Article  CAS  PubMed  Google Scholar 

  107. Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67(18):8699–707. doi:10.1158/0008-5472.CAN-07-1936.

    Article  CAS  PubMed  Google Scholar 

  108. Sachdeva M, Zhu S, Wu F, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A. 2009;106(9):3207–12. doi:10.1073/pnas.0808042106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70(1):378–87. doi:10.1158/0008-5472.CAN-09-2021.

    Article  CAS  PubMed  Google Scholar 

  110. Shi B, Sepp-Lorenzino L, Prisco M, et al. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem. 2007;282(45):32582–90. doi:10.1074/jbc.M702806200.

    Article  CAS  PubMed  Google Scholar 

  111. Fuse M, Nohata N, Kojima S, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38(4):1093–101. doi:10.3892/ijo.2011.919.

    CAS  PubMed  Google Scholar 

  112. Chen X, Gong J, Zeng H, et al. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Res. 2010;70(7):2728–38. doi:10.1158/0008-5472.CAN-09-3718.

    Article  CAS  PubMed  Google Scholar 

  113. Wu Q, Yang Z, Xia L, et al. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget. 2014;5(22):11552–63. doi:2594 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tsai KW, Wu CW, Hu LY, et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer. 2011;129(11):2600–10. doi:10.1002/ijc.25919.

    Article  CAS  PubMed  Google Scholar 

  115. Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 2007;67(4):1419–23. doi:10.1158/0008-5472.CAN-06-4074.

    Article  CAS  PubMed  Google Scholar 

  116. He Y, Cui Y, Wang W, et al. Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia. 2011;13(9):841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tsai KW, Hu LY, Wu CW, et al. Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer. 2010;49(11):969–80. doi:10.1002/gcc.20804.

    Article  CAS  PubMed  Google Scholar 

  118. Li A, Omura N, Hong SM, et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res. 2010;70(13):5226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. de Souza Rocha Simonini P, Breiling A, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70(22):9175–84. doi:10.1158/0008-5472.CAN-10-1318.

    Article  PubMed  CAS  Google Scholar 

  120. Fornari F, Milazzo M, Chieco P, et al. In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol. 2012;227(3):275–85. doi:10.1002/path.3995.

    Article  CAS  PubMed  Google Scholar 

  121. Hu H, Li S, Cui X, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting heparin sulfate proteoglycan 2 (HSPG2). J Biol Chem. 2013;288(16):10973–85. doi:10.1074/jbc.M112.434340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Popovic R, Riesbeck LE, Velu CS, et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood. 2009;113(14):3314–22. doi:10.1182/blood-2008-04-154310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gebauer K, Peters I, Dubrowinskaja N, et al. Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br J Cancer. 2013;108(1):131–8. doi:10.1038/bjc.2012.537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Siemens H, Neumann J, Jackstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 2013;19(3):710–20. doi:10.1158/1078-0432.CCR-12-1703.

    Article  CAS  PubMed  Google Scholar 

  125. Kalimutho M, Di Cecilia S, Del Vecchio BG, et al. Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer. 2011;104(11):1770–8. doi:10.1038/bjc.2011.82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kamimae S, Yamamoto E, Yamano HO, et al. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. Cancer Prev Res (Phila). 2011;4(5):674–83. doi:10.1158/1940-6207.CAPR-10-0214.

    Article  CAS  Google Scholar 

  127. Muraoka T, Soh J, Toyooka S, et al. The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma. Lung Cancer. 2013;82(3):485–90. doi:10.1016/j.lungcan.2013.09.017.

    Article  PubMed  Google Scholar 

  128. Cordero F, Ferrero G, Polidoro S, et al. Differentially methylated microRNAs in prediagnostic samples of subjects who developed breast cancer in the European Prospective Investigation into Nutrition and Cancer (EPIC-Italy) cohort. Carcinogenesis. 2015;36(10):1144–53. doi:10.1093/carcin/bgv102.

    Article  PubMed  Google Scholar 

  129. Suzuki R, Yamamoto E, Nojima M, et al. Aberrant methylation of microRNA-34b/c is a predictive marker of metachronous gastric cancer risk. J Gastroenterol. 2014;49(7):1135–44. doi:10.1007/s00535-013-0861-7.

    Article  CAS  PubMed  Google Scholar 

  130. Asada K, Nakajima T, Shimazu T, et al. Demonstration of the usefulness of epigenetic cancer risk prediction by a multicentre prospective cohort study. Gut. 2015;64(3):388–96. doi:10.1136/gutjnl-2014-307094.

    Article  CAS  PubMed  Google Scholar 

  131. Wang Y, Toh HC, Chow P, et al. MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms. FABES J. 2012;26(7):3032–41. doi:10.1096/fj.11-201855.

    CAS  Google Scholar 

  132. Chang S, Wang RH, Akagi K, et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med. 2011;17(10):1275–82. doi:10.1038/nm.2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sampath D, Liu C, Vasan K, et al. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 2012;119(5):1162–72. doi:10.1182/blood-2011-05-351510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang X, Chen X, Lin J, et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene. 2012;31(24):3002–8. doi:10.1038/onc.2011.470.

    Article  CAS  PubMed  Google Scholar 

  135. Buurman R, Gurlevik E, Schaffer V, et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology. 2012;143(3):811–20 e815. doi:10.1053/j.gastro.2012.05.033

    Google Scholar 

  136. Incoronato M, Urso L, Portela A, et al. Epigenetic regulation of miR-212 expression in lung cancer. PLoS one. 2011;6(11):e27722. doi:10.1371/journal.pone.0027722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ryu S, McDonnell K, Choi H, et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell. 2013;23(1):63–76. doi:10.1016/j.ccr.2012.11.019.

    Article  CAS  PubMed  Google Scholar 

  138. Au SL, Wong CC, Lee JM, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56(2):622–31. doi:10.1002/hep.25679.

    Article  CAS  PubMed  Google Scholar 

  139. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104(40):15805–10. doi:10.1073/pnas.0707628104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ng EK, Tsang WP, Ng SS, et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer. 2009;101(4):699–706. doi:10.1038/sj.bjc.6605195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen BF, Gu S, Suen YK, et al. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics. 2014;9(1):119–28. doi:10.4161/epi.25799.

    Article  CAS  PubMed  Google Scholar 

  142. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52(1):60–70. doi:10.1002/hep.23660.

    Article  CAS  PubMed  Google Scholar 

  143. Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 2010;51(3):881–90. doi:10.1002/hep.23381.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang H, Wu J, Meng X, et al. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis. 2011;32(7):1033–42. doi:10.1093/carcin/bgr081.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang Z, Tang H, Wang Z, et al. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer. 2011;10:124. doi:10.1186/1476-4598-10-124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu R, Gu J, Jiang P, et al. DNMT1-microRNA126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-AKT signaling. Clin Cancer Res. 2015;21(4):854–63. doi:10.1158/1078-0432.CCR-14-1740.

    Article  CAS  PubMed  Google Scholar 

  147. Majid S, Dar AA, Saini S, et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 2013;19(1):73–84. doi:10.1158/1078-0432.CCR-12-2952.

    Article  CAS  PubMed  Google Scholar 

  148. Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2012;13(1):7–13. doi:10.1038/nrg3080.

    CAS  Google Scholar 

  149. Chuang KH, Whitney-Miller CL, Chu CY, et al. MicroRNA-494 is a master epigenetic regulator of multiple invasion-suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors. Hepatology. 2015;62(2):466–80. doi:10.1002/hep.27816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Loriot A, Van Tongelen A, Blanco J, et al. A novel cancer-germline transcript carrying pro-metastatic miR-105 and TET-targeting miR-767 induced by DNA hypomethylation in tumors. Epigenetics. 2014;9(8):1163–71. doi:10.4161/epi.29628.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9. doi:10.1038/nature01075.

    Article  CAS  PubMed  Google Scholar 

  152. Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;100(20):11606–11. doi:10.1073/pnas.1933744100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9. doi:10.1126/science.1165395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Friedman JM, Liang G, Liu CC, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009;69(6):2623–9. doi:10.1158/0008-5472.CAN-08-3114.

    Article  CAS  PubMed  Google Scholar 

  155. Wang HJ, Ruan HJ, He XJ, et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010;46(12):2295–303.

    Article  CAS  PubMed  Google Scholar 

  156. Zhang JG, Guo JF, Liu DL, et al. MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol. 2011;6(4):671–8. doi:10.1097/JTO.0b013e318208eb35.

    Article  PubMed  Google Scholar 

  157. Sakurai T, Bilim VN, Ugolkov AV, et al. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem Biophys Res Commun. 2012;422(4):607–14. doi:10.1016/j.bbrc.2012.05.035.

    Article  CAS  PubMed  Google Scholar 

  158. Wong CF, Tellam RL. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 2008;283(15):9836–43. doi:10.1074/jbc.M709614200.

    Article  CAS  PubMed  Google Scholar 

  159. Alajez NM, Shi W, Hui AB, et al. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis. 2010;1:e85. doi:10.1038/cddis.2010.64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zheng F, Liao YJ, Cai MY, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012;61(2):278–89. doi:10.1136/gut.2011.239145.

    Article  CAS  PubMed  Google Scholar 

  161. Guo Y, Ying L, Tian Y, et al. miR-144 down-regulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 2013;280(18):4531–8. doi:10.1111/febs.12417.

    Article  CAS  PubMed  Google Scholar 

  162. Derfoul A, Juan AH, Difilippantonio MJ, et al. Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis. 2011;32(11):1607–14. doi:10.1093/carcin/bgr184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kong D, Heath E, Chen W, et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS ONE. 2012;7(3):e33729. doi:10.1371/journal.pone.0033729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cao Q, Mani RS, Ateeq B, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell. 2011;20(2):187–99. doi:10.1016/j.ccr.2011.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang X, Zhao X, Fiskus W, et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell. 2012;22(4):506–23. doi:10.1016/j.ccr.2012.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu W, Bhagat TD, Yang X et al. Hypomethylation of non-coding DNA regions and overexpression of the long non-coding RNA, AFAP1-AS1, in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology, 2013;144(5):956–66 e954. doi:10.1053/j.gastro.2013.01.019

    Google Scholar 

  167. Li T, Xie J, Shen C, et al. Up-regulation of long non-coding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma. Oncogene. 2015. doi:10.1038/onc.2015.223.

    Google Scholar 

  168. Braconi C, Kogure T, Valeri N, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30(47):4750–6. doi:10.1038/onc.2011.193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Garding A, Bhattacharya N, Claus R, et al. Epigenetic up-regulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis down-regulation of a gene cluster that targets NF-κB. PLoS Genet. 2013;9(4):e1003373. doi:10.1371/journal.pgen.1003373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhi H, Ning S, Li X, et al. A novel reannotation strategy for dissecting DNA methylation patterns of human long intergenic non-coding RNAs in cancers. Nucleic Acids Res. 2014;42(13):8258–70. doi:10.1093/nar/gku575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sun M, Liu XH, Lu KH, et al. EZH2-mediated epigenetic suppression of long non-coding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298. doi:10.1038/cddis.2014.256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi:10.1038/nature08975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yang Z, Zhou L, Wu LM, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18(5):1243–50. doi:10.1245/s10434-011-1581-y.

    Article  PubMed  Google Scholar 

  175. Kogo R, Shimamura T, Mimori K, et al. Long non-coding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6. doi:10.1158/0008-5472.CAN-11-1021.

    Article  CAS  PubMed  Google Scholar 

  176. Kim K, Jutooru I, Chadalapaka G, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2012. doi:10.1038/onc.2012.193.

    Google Scholar 

  177. Niinuma T, Suzuki H, Nojima M, et al. Up-regulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72(5):1126–36. doi:10.1158/0008-5472.CAN-11-1803.

    Article  CAS  PubMed  Google Scholar 

  178. Pandey GK, Mitra S, Subhash S, et al. The risk-associated long non-coding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 2014;26(5):722–37. doi:10.1016/j.ccell.2014.09.014.

    Article  CAS  PubMed  Google Scholar 

  179. Li W, Zheng J, Deng J, You Y et al. Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells. Gastroenterology, 2014;146(7):1714–26 e1715. doi:10.1053/j.gastro.2014.03.002

    Google Scholar 

  180. Cui M, Xiao Z, Wang Y, Zheng M, et al. Long non-coding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res. 2015;75(5):846–57. doi:10.1158/0008-5472.CAN-14-1192.

    Article  CAS  PubMed  Google Scholar 

  181. Merry CR, Forrest ME, Sabers JN, et al. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet. 2015;24(21):6240–53. doi:10.1093/hmg/ddv343.

    Article  CAS  PubMed  Google Scholar 

  182. Arab K, Park YJ, Lindroth AM, et al. Long non-coding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 2014;55(4):604–14. doi:10.1016/j.molcel.2014.06.031.

    Article  CAS  PubMed  Google Scholar 

  183. Gooskens SL, Gadd S, Guidry Auvil JM, et al. TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget. 2015;6(18):15828–41. doi:4682 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. William Goldman has helped edit this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Suzuki, H., Maruyama, R., Yamamoto, E., Niinuma, T., Kai, M. (2016). Relationship Between Noncoding RNA Dysregulation and Epigenetic Mechanisms in Cancer. In: Song, E. (eds) The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-10-1498-7_4

Download citation

Publish with us

Policies and ethics