Skip to main content

Main Complications of AECHB and Severe Hepatitis B (Liver Failure)

  • Chapter
  • First Online:
Acute Exacerbation of Chronic Hepatitis B

Abstract

This chapter describes the clinical features, and diagnosis of complications in AECHB including secondary bacterial infections, coagulation disorder, water electrolyte disorder, hepatorenal syndrome, hepatic encephalopathy, hepatopulmonary syndrome and endotoxemia

  1. 1.

    Patients with severe hepatitis have impaired immunity and are therefore vulnerable to all kinds of infections. After infection, these patients may experience shock, DIC and multiple organ failure, all of which seriously affect their prognosis and are major causes of death. Concurrent infections consist primarily of infections of the lungs, intestines, biliary tract, and urinary tract, as well as spontaneous bacterial peritonitis and sepsis.

  2. 2.

    Severe hepatitis may reduce the synthesis of coagulation factors and enhance their dysfunction and increase anticoagulants and platelet abnormalities, leading to coagulopathy. Infection, hepatorenal syndrome and complications can further aggravate coagulopathy, resulting in DIC and seriously affecting patient prognosis.

  3. 3.

    Hepatorenal syndrome, which is characterized by renal failure, hemodynamic changes in arterial circulation and abnormalities in the endogenous vascular system, is a common clinical complication of end-stage liver disease, and one of the important indicators for the prognosis of patients with severe hepatitis.

  4. 4.

    Water electrolyte disorder (water retention, hyponatremia, hypokalemia, hyperkalaemia) and acid-base imbalance are common in patients with severe hepatitis. These internal environment disorders can lead to exacerbation and complication of the illness.

  5. 5.

    Hepatic encephalopathy is a neurological and psychiatric anomaly syndrome based on metabolic disorder, and an important prognostic indicator for patients with severe hepatitis.

  6. 6.

    The hepatopulmonary syndrome is an important vascular complication in lungs due to systemic hypoxemia in patients with cirrhosis and portal hypertension. The majority of patients with HPS are asymptomatic. Long-term oxygen therapy remains the most frequently recommended therapy for symptoms in patients with severe hypoxemia.

  7. 7.

    Endotoxemia, an important complication of severe hepatitis, is not only a second hit to the liver, but also leads to other complications including SIRS and MODS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 02 August 2019

    The original version of the book was inadvertently published with spelling errors in author names. The names have been corrected and details of the changes have been provided below.

References

  1. Bajaj JS, O’Leary JG, Reddy KR, Wong F, Biggins SW, Patton H, Fallon MB, Garcia-Tsao G, Maliakkal B, Malik R, Subramanian RM, Thacker LR, Kamath PS, North American Consortium For The Study Of End-Stage Liver Disease N. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology. 2014;60:250–6.

    Article  PubMed  Google Scholar 

  2. Zhang Z, Lu J, Liu M, Wang Y, Qu G, Li H, Wang J, Pang Y, Liu C, Zhao Y. Genotyping and molecular characteristics of multidrug-resistant Mycobacterium tuberculosis isolates from China. J Infect. 2015;70:335–45.

    Article  PubMed  Google Scholar 

  3. Godbole G, Shanmugam N, Dhawan A, Verma A. Infectious complications in pediatric acute liver failure. J Pediatr Gastroenterol Nutr. 2011;53:320–5.

    Article  PubMed  Google Scholar 

  4. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26:1175–86.

    Article  CAS  PubMed  Google Scholar 

  5. Acharya SK, Dasarathy S, Irshad M. Prospective study of plasma fibronectin in fulminant hepatitis: association with infection and mortality. J Hepatol. 1995;23:8–13.

    Article  CAS  PubMed  Google Scholar 

  6. Qin X, Gao B. The complement system in liver diseases. Cell Mol Immunol. 2006;3:333–40.

    CAS  PubMed  Google Scholar 

  7. Wyke RJ, Yousif-Kadaru AG, Rajkovic IA, Eddleston AL, Williams R. Serum stimulatory activity and polymorphonuclear leucocyte movement in patients with fulminant hepatic failure. Clin Exp Immunol. 1982;50:442–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun S, Guo Y, Zhao G, Zhou X, Li J, Hu J, Yu H, Chen Y, Song H, Qiao F, Xu G, Yang F, Wu Y, Tomlinson S, Duan Z, Zhou Y. Complement and the alternative pathway play an important role in LPS/D-GalN-induced fulminant hepatic failure. PLoS One. 2011;6:e26838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor NJ, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W, Ma Y, Wendon JA, Shawcross DL. The severity of circulating neutrophil dysfunction in patients with cirrhosis is associated with 90-day and 1-year mortality. Aliment Pharmacol Ther. 2014;40:705–15.

    Article  CAS  PubMed  Google Scholar 

  10. Taylor NJ, Nishtala A, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W, Ma Y, Wendon JA, Shawcross DL. Circulating neutrophil dysfunction in acute liver failure. Hepatology. 2013;57:1142–52.

    Article  CAS  PubMed  Google Scholar 

  11. Liu H, Zhang H, Wan G, Sang Y, Chang Y, Wang X, Zeng H. Neutrophil-lymphocyte ratio: a novel predictor for short-term prognosis in acute-on-chronic hepatitis B liver failure. J Viral Hepat. 2014;21:499–507.

    Article  CAS  PubMed  Google Scholar 

  12. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol. 2001;167:3114–22.

    Article  CAS  PubMed  Google Scholar 

  13. Notas G, Kisseleva T, Brenner D. NK and NKT cells in liver injury and fibrosis. Clin Immunol. 2009;130:16–26.

    Article  CAS  PubMed  Google Scholar 

  14. Tripathy AS, Das R, Chadha MS, Arankalle VA. Epidemic of hepatitis B with high mortality in India: association of fulminant disease with lack of CCL4 and natural killer T cells. J Viral Hepat. 2011;18:e415–22.

    Article  CAS  PubMed  Google Scholar 

  15. Dong X, Gong Y, Zeng H, Hao Y, Wang X, Hou J, Wang J, Li J, Zhu Y, Liu H, Han J, Zhou H, Shen L, Gao T, Zhou T, Yang S, Li S, Chen Y, Meng Q, Li H. Imbalance between circulating CD4+ regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure. Liver Int. 2013;33:1517–26.

    Article  CAS  PubMed  Google Scholar 

  16. Zou Z, Xu D, Li B, Xin S, Zhang Z, Huang L, Fu J, Yang Y, Jin L, Zhao JM, Shi M, Zhou G, Sun Y, Wang FS. Compartmentalization and its implication for peripheral immunologically-competent cells to the liver in patients with HBV-related acute-on-chronic liver failure. Hepatol Res. 2009;39:1198–207.

    Article  CAS  PubMed  Google Scholar 

  17. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye Y, Liu J, Lai Q, Zhao Q, Peng L, Xie C, Zhang G, Zhang S, Zhang Y, Zhu J, Huang Y, Hu Z, Xie D, Lin B, Gao Z. Decreases in activated CD8+ T cells in patients with severe hepatitis B are related to outcomes. Dig Dis Sci. 2015;60:136–45.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology. 2010;51:81–91.

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez J, Acevedo J, Castro M, Garcia O, de Lope CR, Roca D, Pavesi M, Sola E, Moreira L, Silva A, Seva-Pereira T, Corradi F, Mensa J, Gines P, Arroyo V. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology. 2012;55:1551–61.

    Article  PubMed  Google Scholar 

  21. Pinzone MR, Celesia BM, Di Rosa M, Cacopardo B, Nunnari G. Microbial translocation in chronic liver diseases. Int J Microbiol. 2012;2012:694629.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5:S29–36.

    Article  PubMed  Google Scholar 

  23. Bauer TM, Schwacha H, Steinbruckner B, Brinkmann FE, Ditzen AK, Aponte JJ, Pelz K, Berger D, Kist M, Blum HE. Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am J Gastroenterol. 2002;97:2364–70.

    Article  PubMed  Google Scholar 

  24. Wang XD, Soltesz V, Andersson R, Bengmark S. Bacterial translocation in acute liver failure induced by 90 per cent hepatectomy in the rat. Br J Surg. 1993;80:66–71.

    Article  CAS  PubMed  Google Scholar 

  25. Verbeke L, Nevens F, Laleman W. Bench-to-beside review: acute-on-chronic liver failure - linking the gut, liver and systemic circulation. Crit Care. 2011;15:233.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol. 2015;7:425–42.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Su HB, Wang HF, Lin F, Xu HM, Zhao H, Li L, Yan T, Mou JS, Li C. Retrospective study of liver failure complicated with bacterium and fungous infection. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2007;21:229–31.

    CAS  PubMed  Google Scholar 

  28. Zhang XH, Zhang GH, Man CJ, He FM. Clinical study on the severe hepatitis with nosocomial fungal infections and risk factors. Zhonghua Gan Zang Bing Za Zhi. 2004;12:389–91.

    PubMed  Google Scholar 

  29. Koulaouzidis A. Diagnosis of spontaneous bacterial peritonitis: an update on leucocyte esterase reagent strips. World J Gastroenterol. 2011;17:1091–4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koulaouzidis A, Bhat S, Saeed AA. Spontaneous bacterial peritonitis. World J Gastroenterol. 2009;15:1042–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Madrid AM, Cumsille F, Defilippi C. Altered small bowel motility in patients with liver cirrhosis depends on severity of liver disease. Dig Dis Sci. 1997;42:738–42.

    Article  CAS  PubMed  Google Scholar 

  32. Chiva M, Guarner C, Peralta C, Llovet T, Gomez G, Soriano G, Balanzo J. Intestinal mucosal oxidative damage and bacterial translocation in cirrhotic rats. Eur J Gastroenterol Hepatol. 2003;15:145–50.

    Article  PubMed  Google Scholar 

  33. Ramachandran A, Prabhu R, Thomas S, Reddy JB, Pulimood A, Balasubramanian KA. Intestinal mucosal alterations in experimental cirrhosis in the rat: role of oxygen free radicals. Hepatology. 2002;35:622–9.

    Article  CAS  PubMed  Google Scholar 

  34. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.

    Article  Google Scholar 

  35. Runyon BA. Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012. Hepatology. 2013;57:1651–3.

    Article  PubMed  Google Scholar 

  36. Rimola A, Garcia-Tsao G, Navasa M, Piddock LJ, Planas R, Bernard B, Inadomi JM. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. International Ascites Club. J Hepatol. 2000;32:142–53.

    Article  CAS  PubMed  Google Scholar 

  37. Eccles S, Pincus C, Higgins B, Woodhead M. Diagnosis and management of community and hospital acquired pneumonia in adults: summary of NICE guidance. BMJ. 2014;349:g6722.

    Article  PubMed  CAS  Google Scholar 

  38. Mandell LA. Community-acquired pneumonia: An overview. Postgrad Med. 2015;127:607–15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Caly WR, Strauss E. A prospective study of bacterial infections in patients with cirrhosis. J Hepatol. 1993;18:353–8.

    Article  CAS  PubMed  Google Scholar 

  40. Rolando N, Kramer DJ. Scenario number one: sepsis and ARDS before liver transplantation. Liver Transpl Surg. 1997;3:60–75.

    CAS  PubMed  Google Scholar 

  41. Rolando N, Harvey F, Brahm J, Philpott-Howard J, Alexander G, Casewell M, Fagan E, Williams R. Fungal infection: a common, unrecognised complication of acute liver failure. J Hepatol. 1991;12:1–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hassan EA, Abd El-Rehim AS, Hassany SM, Ahmed AO, Elsherbiny NM, Mohammed MH. Fungal infection in patients with end-stage liver disease: low frequency or low index of suspicion. Int J Infect Dis. 2014;23:69–74.

    Article  PubMed  Google Scholar 

  43. Kups J, Wozniakowska-Gesicka T, al-Batool K. Fungal infection in the course of acute liver failure. Pol Merkur Lekarski. 2002;13:165–7.

    PubMed  Google Scholar 

  44. Chen J, Yang Q, Huang J, Li L. Risk factors for invasive pulmonary aspergillosis and hospital mortality in acute-on-chronic liver failure patients: a retrospective-cohort study. Int J Med Sci. 2013;10:1625–31.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shroff S, Shroff GS, Yust-Katz S, Olar A, Tummala S, Tremont-Lukats IW. The CT halo sign in invasive aspergillosis. Clin Case Rep. 2014;2:113–4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Deeren DH. The Importance of Previous CT Scans in the Diagnosis of Invasive Pulmonary Aspergillosis. Ther Adv Hematol. 2011;2:121–2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Caillot D, Latrabe V, Thiebaut A, Herbrecht R, De Botton S, Pigneux A, Monchecourt F, Mahi L, Alfandari S, Couaillier JF. Computer tomography in pulmonary invasive aspergillosis in hematological patients with neutropenia: an useful tool for diagnosis and assessment of outcome in clinical trials. Eur J Radiol. 2010;74:e172–5.

    Article  PubMed  Google Scholar 

  48. Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C, Syrbe U, Kruger DH, von Baehr R, Volk HD. Cytomegalovirus reactivation and tumour necrosis factor. Lancet. 1994;343:268–9.

    Article  CAS  PubMed  Google Scholar 

  49. Varani S, Lazzarotto T, Margotti M, Masi L, Gramantieri L, Bolondi L, Landini MP. Laboratory signs of acute or recent cytomegalovirus infection are common in cirrhosis of the liver. J Med Virol. 2000;62:25–8.

    Article  CAS  PubMed  Google Scholar 

  50. Knollmann FD, Maurer J, Bechstein WO, Vogl TJ, Neuhaus P, Felix R. Pulmonary disease in liver transplant recipients. Spectrum of CT features. Acta Radiol. 2000;41:230–6.

    Article  CAS  PubMed  Google Scholar 

  51. Dhiman RK, Saraswat VA, Rajekar H, Reddy C, Chawla YK. A guide to the management of tuberculosis in patients with chronic liver disease. J Clin Exp Hepatol. 2012;2:260–70.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Menzies D, Pai M, Comstock G. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med. 2007;146:340–54.

    Article  PubMed  Google Scholar 

  53. Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med. 2008;149:177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ferrara G, Losi M, Meacci M, Meccugni B, Piro R, Roversi P, Bergamini BM, D’Amico R, Marchegiano P, Rumpianesi F, Fabbri LM, Richeldi L. Routine hospital use of a new commercial whole blood interferon-gamma assay for the diagnosis of tuberculosis infection. Am J Respir Crit Care Med. 2005;172:631–5.

    Article  PubMed  Google Scholar 

  55. Gangadharam PR. Microbiology of nontuberculosis mycobacteria. Semin Respir Infect. 1996;11:231–43.

    CAS  PubMed  Google Scholar 

  56. Atilla A, Aydin S, Demirdoven AN, Kilic SS. Severe toxoplasmic hepatitis in an immunocompetent patient. Jpn J Infect Dis. 2015;

    Google Scholar 

  57. Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000Prime Rep. 2015;7:62.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Buonfrate D, Formenti F, Perandin F, Bisoffi Z. Novel approaches to the diagnosis of Strongyloides stercoralis infection. Clin Microbiol Infect. 2015;21:543–52.

    Article  CAS  PubMed  Google Scholar 

  59. Nakajima T. Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure. Med Sci Monit. 2015;21:1721–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Muciñobermejo J, Carrilloesper R, Uribe M, et al. Coagulation abnormalities in the cirrhotic patient. Ann Hepatol. 2013;12:713–24.

    Article  Google Scholar 

  61. Mihaila R, Dragomir I. Advances of knowledge on coagulation disorders in liver cirrhosis and their clinical consequences. Biomed Res. 2015;26:625–32.

    CAS  Google Scholar 

  62. Mirsaeva GK, Mironchuk NN. Features of coagulation hemostasis and anticoagulation system in patients with chronic heart failure due to ischemic heart disease. Kazan Med J. 2015;96(5):716–22.

    Article  Google Scholar 

  63. Valla DC, Rautou PE. The coagulation system in patients with end-stage liver disease. Liver Int. 2015;35(Suppl 1):139–44.

    Article  CAS  PubMed  Google Scholar 

  64. Jeon YJ, Kim YR, Bo EL, et al. Association of five common polymorphisms in the plasminogen activator inhibitor-1 gene with primary ovarian insufficiency. Fertil Steril. 2014;101:825–32.

    Article  CAS  PubMed  Google Scholar 

  65. Okafor ON, Gorog DA. Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. J Am Coll Cardiol. 2015;65:1683–99.

    Article  CAS  PubMed  Google Scholar 

  66. Pallister CJ, Watson MS. Haematology. Banbury: Scion; 2010. p. 336–47. isbn:1-904842-39-9.

    Google Scholar 

  67. Heinz S, Braspenning J. Measurement of blood coagulation factor synthesis in cultures of human hepatocytes. Methods Mol Biol. 2015;1250:309–16.

    Article  CAS  PubMed  Google Scholar 

  68. Kopec AK, Luyendyk JP. Coagulation in liver toxicity and disease: Role of hepatocyte tissue factor. Thromb Res. 2014;133:S57–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Valla DC, Rautou PE. The coagulation system in patients with end-stage liver disease. Liver Int. 2015;35(Suppl 1):139–44.

    Article  CAS  PubMed  Google Scholar 

  70. Gutenberg P. Coagulation factor V deficiency. Phlebology. 2016;34:160–6.

    Google Scholar 

  71. Pluta A, Gutkowski K, Hartleb M. Treatment of coagulopathies in severe liver disease. Postepy Nauk Medycznych. 2010:63–8.

    Google Scholar 

  72. Jin YH, Wang MS, Zheng FX, et al. Molecular genetics and clinical features of nine patients with inherited coagulation factor VII deficiency. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2012;29:404–7.

    CAS  PubMed  Google Scholar 

  73. Math SK, Sanders MA, Hollensead SC. Unexpected laboratory diagnosis: Acquired dysfibrinogenemia in a bleeding patient with liver disease. MLO Med Lab Obs. 2010;42

    Google Scholar 

  74. Chen W, Wang D, Ni N, et al. A fast and simple approach to the quantitative evaluation of fibrinogen coagulation. Biotechnol Lett. 2014;36:337–40.

    Article  CAS  PubMed  Google Scholar 

  75. Schroeder V, Handrková H, Dodt J, et al. Free factor XIII activation peptide affects factor XIII function. Br J Haematol. 2014;168:757–9.

    Article  PubMed  CAS  Google Scholar 

  76. Komáromi I, Bagoly Z, Muszbek L. Factor XIII: novel structural and functional aspects. J Thromb Haemost. 2011;9:9–20.

    Article  PubMed  CAS  Google Scholar 

  77. Samis JA, Stewart KA, Nesheim ME, et al. Factor V cleavage and inactivation are temporally associated with elevated elastase during experimental sepsis. J Thromb Haemost. 2007;5:2559–61.

    Article  CAS  PubMed  Google Scholar 

  78. Wheeler AP, Gailani D. The intrinsic pathway of coagulation as a target for antithrombotic therapy. Hematol Oncol Clin North Am. 2016;30:1099–114.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kozarcanin H, Lood C, Munthe-Fog L, et al. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J Thromb Haemost. 2016;14:802–7.

    Article  CAS  Google Scholar 

  80. Annich GM. Extracorporeal life support: the precarious balance of hemostasis. J Thromb Haemost. 2015, 13 Suppl 1:S336–42.

    Article  PubMed  Google Scholar 

  81. Chalupa P, Holub M. Favorable Outcome of Severe Acute Hepatitis B in a Patient Treated with Antithrombin III and Antiviral Therapy. Clin Infect Dis. 2009;49:481.

    Article  PubMed  Google Scholar 

  82. Huang N, Rodriguez R L, Hagie F E, et al. Monocot seed product comprising a human serum albumin protein: US, US 8158857 B2[P]. 2012.

    Google Scholar 

  83. Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma. J Trauma Injury Infect Crit Care. 2013;74:1223–9.

    Article  CAS  Google Scholar 

  84. Okamoto K, Tamura T, Yamaguchi K. Clinical trials of anticoagulants and anticoagulant factor concentrates for the management of DIC in Japan. Rinsho Byori. 2011;Suppl 147:95–103.

    Google Scholar 

  85. Mann HJ, Short MA, Schlichting DE. Protein C in critical illness. Am J Health Syst Pharm. 2009;66:1089–96.

    Article  CAS  PubMed  Google Scholar 

  86. Kruithof EK, Dunoyer-Geindre S. Human tissue-type plasminogen activator. Thromb Haemost. 2014;112:243–54.

    Article  CAS  PubMed  Google Scholar 

  87. Jankun J, Aleem AM, Selman SH, et al. Highly stable plasminogen activator inhibitor type one (VLHL PAI-1) protects fibrin clots from tissue plasminogen activator-mediated fibrinolysis. Int J Mol Med. 2007;20:683–7.

    CAS  PubMed  Google Scholar 

  88. Martí-Carvajal AJ, Cardona AF, Simancas D. Treatment for disseminated intravascular coagulation in patients with acute and chronic leukemia. Cochrane Database Syst Rev. 2015;66:1–2.

    Google Scholar 

  89. Frith D, Brohi K. The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care. 2012;18(6):631–6.

    Article  PubMed  Google Scholar 

  90. Agren A, Wiman B, Schulman S. Laboratory evidence of hyperfibrinolysis in association with low PAI-1 activity. Blood Coagul Fibrinolysis. 2007;18:657–60.

    Article  PubMed  Google Scholar 

  91. Carvalho M, Rodrigues A, Gomes M, et al. Interventional algorithms for the control of coagulopathic bleeding in surgical, trauma, and postpartum settings: recommendations from the Share Network Group. Clin Appl Thromb Hemost. 2016;22:1593–600.

    Article  Google Scholar 

  92. Surawong A, Rojnuckarin P, Juntiang J, et al. Hyperfibrinolysis and the risk of hemorrhage in stable cirrhotic patients. Asian Biomed. 2010;4:199–206.

    Article  Google Scholar 

  93. Fohlen-Walter A, Maistre ED, Mulot A, et al. Does negative heparin-platelet factor 4 enzyme-linked immunosorbent assay effectively exclude heparin-induced thrombocytopenia? J Thromb Haemost. 2003;1:1844–5.

    Article  CAS  PubMed  Google Scholar 

  94. Lehmann JP. Endogenous plasma activated protein C levels and the effect of enoxaparin and drotrecogin alfa (activated) on markers of coagulation activation and fibrinolysis in pulmonary embolism. Crit Care. 2011;15:1–10.

    Article  Google Scholar 

  95. Yousif M, Hassanein O, Salim I, Said N. Role of endogenous heparinoids and bacerial infection in bleeding from esophageal varices complicating liver cirrhosis. J Hepatol. 50:S284.

    Article  Google Scholar 

  96. Blich M, Golan A, Arvatz G, et al. Macrophages activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol. 2013;33:e56–65.

    Article  CAS  PubMed  Google Scholar 

  97. Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res. 2003;42:423–38.

    Article  CAS  PubMed  Google Scholar 

  98. Kuharsky AL, Fogelson AL. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys J. 2001;80:1050–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Crow AR, Leytin V, Starkey AF, et al. CD154 (CD40 ligand)-deficient mice exhibit prolonged bleeding time and decreased shear-induced platelet aggregates. J Thromb Haemost. 2003;1:850–2.

    Article  CAS  PubMed  Google Scholar 

  100. Jiang XW, Fei G, Yan M, et al. Percutaneous microwave ablation in the spleen for treatment of hypersplenism in cirrhosis patients. Digest Dis Sci. 2015;61:1–6.

    Google Scholar 

  101. Tomikawa M, Akahoshi T, Sugimachi K, et al. Laparoscopic splenectomy may be a superior supportive intervention for cirrhotic patients with hypersplenism. J Gastroenterol Hepatol. 2010;25:397–402.

    Article  PubMed  Google Scholar 

  102. Kuter DJ, Gernsheimer TB. Thrombopoietin and platelet production in chronic immune thrombocytopenia. Hematol Oncol Clin North Am. 2009;23:1193–211.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bachman DE, Forman MA, Hostutler RA, et al. Prospective diagnostic accuracy evaluation and clinical utilization of a modified assay for platelet-associated immunoglobulin in thrombocytopenic and nonthrombocytopenic dogs. Vet Clin Pathol. 2015;44:355–68.

    Article  PubMed  Google Scholar 

  104. Melissa V. Chan, Rebecca B. M. Knowles, Lundberg M H, et al. P2Y 12, receptor blockade synergises strongly with nitric oxide and prostacyclin to inhibit platelet activation. Br J Clin Pharmacol, 2015, 81:621–633.

    Google Scholar 

  105. De Haas CJC, Weeterings C, Vughs MM, et al. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibα and α IIb β 3. J Thromb Haemost. 2009;7:1867–74.

    Article  PubMed  CAS  Google Scholar 

  106. Soares CV, Lima A, et al. Liver disease and gastrointestinal bleeding in hereditary haemorrhagic telangiectasia - case report. Jornal Português De Gastrenterologia. 2010:213–6.

    Google Scholar 

  107. Philips C, Mukhopadhyay P. Hemostasis, disorders of coagulation and transfusion in cirrhosis. J Franklin Inst. 2015;64:123–4.

    Google Scholar 

  108. Arroyo V, Fernandez J, Ginès P. Pathogenesis and treatment of hepatorenal syndrome. Semin Liver Dis. 2008;28:81–95.

    Article  PubMed  Google Scholar 

  109. Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis. 2008;28:26–42.

    Article  CAS  PubMed  Google Scholar 

  110. Cho J, Sun MC, Yu SJ, et al. Bleeding complications in critically ill patients with liver cirrhosis. Korean J Intern Med. 2013;31:288–95.

    Article  Google Scholar 

  111. Sillermatula JM, Schwameis M, Blann A, et al. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects. Thromb Haemost. 2011;106:1020–33.

    Article  CAS  Google Scholar 

  112. Tripodi A, Anstee QM, Sogaard KK, et al. Hypercoagulability in cirrhosis: causes and consequences 1. J Thromb Haemost. 2011;9:1713–23.

    Article  CAS  PubMed  Google Scholar 

  113. Presseizen K, Friedman Z, Shapiro H, et al. Phosphatidylserine expression on the platelet membrane of patients with myeloproliferative disorders and its effect on platelet-dependent thrombin formation. Clin Appl Thromb Hemost. 2002;8:33–9.

    Article  CAS  PubMed  Google Scholar 

  114. Ali M, Ananthakrishnan AN, Mcginley EL, et al. Deep vein thrombosis and pulmonary embolism in hospitalized patients with cirrhosis: a nationwide analysis. Digest Dis Sci. 2011;56:2152–9.

    Article  PubMed  Google Scholar 

  115. Kamran BL, Katayon H, Dorna M, et al. Risk factors for portal vein thrombosis in patients with cirrhosis awaiting liver transplantation in Shiraz, Iran. Hepat Mon. 2015;15:e26407.

    Google Scholar 

  116. Jacobs BS, Levine SR. Antiphospholipid antibody syndrome. Curr Treat Options Neurol. 2012;2:449–57.

    Article  Google Scholar 

  117. Soule H R, Brunck T K. Blood coagulation protein antagonists and uses therefor: EP, US 6221659 B1[P]. 2001.

    Google Scholar 

  118. Weingarten MA, Sande AA. Acute liver failure in dogs and cats. J Vet Emerg Crit Care. 2015;25:455–73.

    Article  Google Scholar 

  119. Asakura H. Classifying types of disseminated intravascular coagulation: clinical and animal models. J Intensive Care. 2014;2:1–7.

    Article  Google Scholar 

  120. Seth D, Haber PS, Syn WK, et al. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol. 2011;26:1089–105.

    Article  CAS  PubMed  Google Scholar 

  121. Collen D. Thrombin-antithrombin III and plasmin-antiplasmin complexes as indicators of in vivo activation of the coagulation and/or fibrinolytic systems. Pier Working Paper Archive. 2006;32:398–402.

    Google Scholar 

  122. Giannoni P, Pietra G, Travaini G, et al. Chronic lymphocytic leukemia nurse-like cells express hepatocyte growth factor receptor (c-MET) and indoleamine 2,3-dioxygenase and display features of immunosuppressive type 2 skewed macrophages. Haematologica. 2014;99:1078–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pluta A, Gutkowski K, Hartleb M. Coagulopathy in liver diseases. Adv Med Sci. 2010;55:16–21.

    Article  CAS  PubMed  Google Scholar 

  124. Jablonka W, Kotsyfakis M, Mizurini DM, et al. Identification and mechanistic analysis of a novel tick-derived inhibitor of thrombin. PLoS One. 2014;10:e0133991.

    Article  CAS  Google Scholar 

  125. Gajos G, Zalewski J, Undas A. Low fasting glucose is associated with enhanced thrombin generation and unfavorable fibrin clot properties in diabetics with high cardiovascular risk. J Am Coll Cardiol. 2015;65:476–80.

    Article  Google Scholar 

  126. Weijers EM, Wijhe MHV, Joosten L, et al. Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells. J Thromb Haemost. 2010;8:2800–9.

    Article  CAS  PubMed  Google Scholar 

  127. Chen CS, Cumbler EU, Triebling AT. Coagulopathy due to celiac disease presenting as intramuscular hemorrhage. J Gen Intern Med. 2007;22:1608–12.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Birchall J, Doree C, Gill R, et al. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev. 2011;20:93–103.

    Google Scholar 

  129. Wang L, Bastarache JA, Ware LB. The coagulation cascade in sepsis. Curr Pharm Des. 2008;14:1860–9.

    Article  CAS  PubMed  Google Scholar 

  130. Abdel-Razik A, Mousa N, Elhelaly R, et al. De-novo portal vein thrombosis in liver cirrhosis: risk factors and correlation with the model for end-stage liver disease scoring system. Eur J Gastroenterol Hepatol. 2015;27:585–92.

    Article  PubMed  Google Scholar 

  131. Baumann Kreuziger LM, Datta YH, Johnson AD, et al. Monitoring anticoagulation in patients with an unreliable PT/INR: factor II versus chromogenic factor X testing. Am J Hematol. 2014;87

    Google Scholar 

  132. Tripodi A, Chantarangkul V, Primignani M, et al. The international normalized ratio calibrated for cirrhosis (INR liver) normalizes prothrombin time results for model for end-stage liver disease calculation †. Hepatology. 2007;46(2):520–7.

    Article  PubMed  Google Scholar 

  133. Shiozawa Y, Fujita H, Fujimura J, et al. A fetal case of transient abnormal myelopoiesis with severe liver failure in Down syndrome: prognostic value of serum markers. Pediatr Hematol Oncol. 2004;21:273–8.

    Article  PubMed  Google Scholar 

  134. Liu XY, Hu JH, Wang HF. Analysis of prognostic factors for patients with acute-on-chronic liver failure. Chin J Hepatol. 2009;17:607–10.

    CAS  Google Scholar 

  135. Lippi G, Favaloro EJ. Activated partial thromboplastin time: new tricks for an old dogma. Semin Thromb Hemost. 2008;34:604–11.

    Article  CAS  PubMed  Google Scholar 

  136. Wu SJ, Yan HD, Zheng ZX, et al. Establishment and validation of ALPH-Q score to predict mortality risk in patients with acute-on-chronic hepatitis B liver failure: a prospective cohort study. Medicine. 2015;94:e403.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tobias JD, Berkenbosch JW. Synthetic factor VIIa concentrate to treat coagulopathy and gastrointestinal bleeding in an infant with end-stage liver disease. Clin Pediatr. 2002;41:613–6.

    Article  Google Scholar 

  138. Chen J, Duan ZP, Bai L, et al. Changing characteristic of blood coagulation factors and their correlation with blood coagulation status in different hepatic diseases. Chin J Hepatol. 2012;20:206–10.

    CAS  Google Scholar 

  139. Berkessy S. The plasma-protamine-paracoagulation-(3-P-) test. Zeitschrift Für Die Gesamte Innere Medizin Und Ihre Grenzgebiete. 1974;29:491–3.

    CAS  PubMed  Google Scholar 

  140. Timan IS, Aulia D, Enny. The use of ethanol gelation test to screen the activation of coagulation and disseminated intravascular coagulation. J Lab Med Qual Assur, 2003, 25:231–235.

    Google Scholar 

  141. Venkata NRE, Divakar G. An overview on microbial fibrinolytic proteases. Int J Pharm Sci Res. 2014;5:643–56.

    Google Scholar 

  142. Nair GB, Lajin M, Muslimani A. A cirrhotic patient with spontaneous intramuscular hematoma due to primary hyperfibrinolysis. Clin Adv Hematol Oncol. 2011;9:249–52.

    PubMed  Google Scholar 

  143. Sartori MT, Spiezia L, Cesaro S, et al. Role of fibrinolytic and clotting parameters in the diagnosis of liver veno-occlusive disease after hematopoietic stem cell transplantation in a pediatric population. Thromb Haemost. 2005;93:682–9.

    Article  CAS  PubMed  Google Scholar 

  144. Koyama K, Madoiwa S, Nunomiya S, et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care. 2014;18:1–11.

    Article  Google Scholar 

  145. Seto WK, Lai CL, Yuen MF. Acute-on-chronic liver failure in chronic hepatitis B. J Gastroenterol Hepatol. 2012;27:662–9.

    Article  PubMed  Google Scholar 

  146. Zanetto A, Senzolo M, Ferrarese A, et al. Assessment of bleeding risk in patients with cirrhosis. Curr Hepatol Rep. 2015;14:9–18.

    Article  Google Scholar 

  147. Bailey MA, Griffin KJ, Sohrabi S, et al. Plasma thrombin-antithrombin complex, prothrombin fragments 1 and 2, and D-dimer levels are elevated after endovascular but not open repair of infrarenal abdominal aortic aneurysm. J Vasc Surg. 2013;57:1512–8.

    Article  PubMed  Google Scholar 

  148. Lisman T, Bakhtiari K, Adelmeijer J, et al. Intact thrombin generation and decreased fibrinolytic capacity in patients with acute liver injury or acute liver failure. J Thromb Haemost. 2012;10:1312–9.

    Article  CAS  PubMed  Google Scholar 

  149. Aso Y, Matsumoto S, Fujiwara Y, et al. Impaired fibrinolytic compensation for hypercoagulability in obese patients with type 2 diabetes: association with increased plasminogen activator inhibitor-1. Metabolism. 2002;51:471–6.

    Article  CAS  PubMed  Google Scholar 

  150. Levi M, De JE, Meijers J. The diagnosis of disseminated intravascular coagulation. Blood Rev. 2003;16:217–23.

    Article  Google Scholar 

  151. Kawasugi K, Wada H, Hatada T, et al. Prospective evaluation of hemostatic abnormalities in overt DIC due to various underlying diseases. Thromb Res. 2011;128:186–90.

    Article  CAS  PubMed  Google Scholar 

  152. Tang XH, Qiang LI, Lin WH, et al. Establishment and evaluation of a modified plasma protamine paracoagulation test. J Southern Med Univ. 2011;31:1626–8.

    CAS  Google Scholar 

  153. Olson JD. D-dimer: an overview of hemostasis and fibrinolysis, assays, and clinical applications. Adv Clin Chem. 2015;69:1–46.

    Article  CAS  PubMed  Google Scholar 

  154. Lippi G, Favaloro EJ, Cervellin G. Massive posttraumatic bleeding: epidemiology, causes, clinical features, and therapeutic management. Semin Thromb Hemost. 2013;39:83–93.

    Article  PubMed  CAS  Google Scholar 

  155. Bhalla A, Suri V, Singh V. Malarial hepatopathy. J Postgrad Med. 2006;52:315–20.

    CAS  PubMed  Google Scholar 

  156. Wada H, Matsumoto T, Yamashita Y. Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care. 2014;2:15.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Heuft MM, Houba SM, Ge VDB, et al. Protective effect of hepatitis B virus-active antiretroviral therapy against primary hepatitis B virus infection. AIDS. 2014;28:999–1005.

    Article  CAS  PubMed  Google Scholar 

  158. Kozeklangenecker SA. Fluids and coagulation. Curr Opin Crit Care. 2015;21:517–24.

    Google Scholar 

  159. Bhatia V, Lodha R. Upper gastrointestinal bleeding. Indian J Pediatr. 2011;78:227–33.

    Article  PubMed  Google Scholar 

  160. Seo YS, Kim YH, Ahn SH, et al. Clinical features and treatment outcomes of upper gastrointestinal bleeding in patients with cirrhosis. J Korean Med Sci. 2008;23:635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Franchis RD. Somatostatin, somatostatin analogues and other vasoactive drugs in the treatment of bleeding oesophageal varices. Dig Liver Dis. 2004;36(Suppl 1):S93–S100.

    Article  PubMed  CAS  Google Scholar 

  162. Barkun AN, Sarvee M, Myriam M. Topical hemostatic agents: a systematic review with particular emphasis on endoscopic application in GI bleeding. Gastrointest Endosc. 2013;77:692–700.

    Article  PubMed  Google Scholar 

  163. Olsen KM. Use of acid-suppression therapy for treatment of non-variceal upper gastrointestinal bleeding. Am J Health Syst Pharm. 2005;62:18–23.

    Article  Google Scholar 

  164. Bosch J, Abraldes JG, Berzigotti A, et al. Portal hypertension and gastrointestinal bleeding. Semin Liver Dis. 2008;28:3–25.

    Article  CAS  PubMed  Google Scholar 

  165. Tan XP. Observed the effect of Improved three-balloon catheter tube method in cirrhotic patients with gastrointestinal bleeding. Today Nurse. 2014;

    Google Scholar 

  166. Barkun A, Sabbah S, Enns R, et al. The Canadian Registry on Nonvariceal Upper Gastrointestinal Bleeding and Endoscopy (RUGBE): Endoscopic hemostasis and proton pump inhibition are associated with improved outcomes in a real-life setting. Am J Gastroenterol. 2004;99:1238–46.

    Article  PubMed  Google Scholar 

  167. Jovanovic I, Vormbrock K, Wilcox CM, et al. Therapeutic and interventional endoscopy for gastrointestinal bleeding. Eur J Trauma Emerg Surg. 2011;37:339–51.

    Article  CAS  PubMed  Google Scholar 

  168. Dempfle CE, Borggrefe M. Disseminated intravascular coagulation. Intensivmedizin Und Notfallmedizin. 2006;43:103–10.

    Article  Google Scholar 

  169. Saito H, Maruyama I, Shimazaki S, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5:31–41.

    Article  CAS  PubMed  Google Scholar 

  170. Yamanouchi M, Ubara Y, Mise K, et al. Hemodialysis without Anticoagulation for a Patient with Chronic Disseminated Intravascular Coagulation. Case Rep Nephrol Urol. 2014;4:25–30.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Alessandria C, Ozdogan O, Guevara M, Restuccia T, Jimenez W, Arroyo V, et al. MELD score and clinical type predict prognosis in hepatorenal syndrome: relevance to liver transplantation. Hepatology. 2005;41:1282–9.

    Article  PubMed  Google Scholar 

  172. Ginės P, Guevara M, Arroyo V, et al. Hepatorenal syndrome. Lancet. 2003;362:1819–27.

    Article  PubMed  CAS  Google Scholar 

  173. O’Grady JG. Clinical disorders of renal function in acute liver failure. In: Gines P, Arroyo V, Rodes J, Schrier RW, editors. Ascites and renal dysfunction in liver disease. 2nd ed. Oxford: Blackwell Publishing; 2005. p. 383–93.

    Chapter  Google Scholar 

  174. Flint A. Clinical report on hydroperitoneum based on analysis of 46 cases. Am J MedSci. 1963;45:306e39.

    Google Scholar 

  175. Bartoli E, Chiandussi L, editors. Hepato-Renal Syndrome. Padua: Piccin Medical Books; 1979.

    Google Scholar 

  176. Arroyo V, Gines P, Gerbes AL, et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. Int Ascites Club Hepatol. 1996;23:164e76.

    Google Scholar 

  177. Salerno F, Gerbes A, Gines P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007;56:1310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Wong F, Nadim MK, Kellum JA, Salerno F, Bellomo R, Gerbes A, Angeli P, et al. Working Party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut. 2011;60:702–9.

    Article  PubMed  Google Scholar 

  179. Davis CL, Feng S, Sung R, Wong F, Goodrich NP, Melton LB, Reddy KR, et al. Simultaneous liver-kidney transplantation: evaluation to decision making. Am J Transplant. 2007;7:1702–9.

    Article  CAS  PubMed  Google Scholar 

  180. Laleman W. Role of vasoactive substances and cellular effectors in the pathophysiology of cirrhotic portal hypertension: the past, the present and the future--Georges Brohe’e Lecture. Acta Gastroenterol Belg. 2009;72:9e16.

    Google Scholar 

  181. Colle I, Geerts AM, Van Steenkiste C, et al. Hemodynamic changes in splanchnic blood vessels in portal hypertension. Anat Rec (Hoboken). 2008;291:699e713.

    Article  Google Scholar 

  182. Rodrìguez-Vilarrupla A, Fernàndez M, Bosch J, et al. Current concepts on the pathophysiology of portal hypertension. Ann Hepatol. 2007;6:28e36.

    Article  Google Scholar 

  183. Blendis L, Wong F. The hyperdynamic circulation in cirrhosis: an overview. Pharmacol Ther. 2001;89:221e31.

    Article  Google Scholar 

  184. Wong F, Pantea L, Sniderman K. Midodrine, octreotide, albumin, and TIPS in selected patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology. 2004;40:55e64.

    Google Scholar 

  185. Wong F, Sniderman K, Liu P, et al. The effects of transjugular intrahepatic portosystemic shunt on systemic and renal hemodynamics and sodium homeostasis in cirrhotic patients with refractory ascites. Ann Intern Med. 1995;122:816e22.

    Google Scholar 

  186. Arroyo V, Terra C, Gines P. Advances in the pathogenesis and treatment of type-1 and type-2 hepatorenal syndrome. J Hepatol. 2007;46:935e46.

    Article  CAS  Google Scholar 

  187. Bernadich C, Bandi JC, Piera C, et al. Circulatory effects of graded diversion of portal blood flow to the systemic circulation in rats: role of nitric oxide. Hepatology. 1997;26:262e7.

    Article  Google Scholar 

  188. Bosch J, Pizcueta MP, Fernandez M, et al. Hepatic, splanchnic and systemic haemodynamic abnormalities in portal hypertension. Baillieres Clin Gastroenterol. 1992;6:425e36.

    Article  Google Scholar 

  189. Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008;48:2064–77.

    Article  CAS  PubMed  Google Scholar 

  190. Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8:1151–7.

    Article  CAS  PubMed  Google Scholar 

  191. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006;43:S121–31.

    Article  CAS  PubMed  Google Scholar 

  192. Ginès A, Escorsell A, Ginès P, et al. Incidence, predictive factors, and prognosis of hepatorenal syndrome in cirrhosis with ascites. Gastroenterology. 1993;105:229–36.

    Article  PubMed  Google Scholar 

  193. Lata J. Hepatorenal syndrome. World J Gastroenterol. 2012;18:4978–84.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Salerno F, Cazzaniga M, Merli M, Spinzi G, Saibeni S, Salmi A, Fagiuoli S, et al. Diagnosis, treatment and survival of patients with hepatorenal syndrome: a survey on daily medical practice. J Hepatol. 2011;55:1241–8.

    Article  CAS  PubMed  Google Scholar 

  195. Zakim B, et al. Hepatology [M]. 6th ed: Elsevier Medicine; 2011.

    Google Scholar 

  196. Seu P, Wilkinson AH, Shaked A, et al. The hepatorenal syndrome in liver transplant recipients. Ann Surg. 1991;57:806–9.

    CAS  Google Scholar 

  197. Sanyal AJ, Boyer T, Garcia-Tsao G, Regenstein F, et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology. 2008;134:1360–8.

    Article  CAS  PubMed  Google Scholar 

  198. Martin-Llahi M, Pepin MN, Guevara M, Diaz F, Torre A, Monescillo A, Soriano G, et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008;134:1352–9.

    Article  CAS  PubMed  Google Scholar 

  199. Moreau R, Durand F, Poynard T, et al. Terlipressin in patients with cirrhosis and type 1 hepatorenal syndrome: a retrospective multicenter study. Gastroenterology. 2002;122:923–30.

    Article  CAS  PubMed  Google Scholar 

  200. Solanki P, Chawla A, Garg R, et al. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trial. J Gastroenterol Hepatol. 2003;18:152–6.

    Article  CAS  PubMed  Google Scholar 

  201. Lavayssiere L, Kallab S, Cardeau-Desangles I, et al. Impact of molecular adsorbent recirculating system on renal recovery in type-1 hepatorenal syndrome patients with chronic liver failure. J Gastroenterol Hepatol. 2013;28:1019–24.

    Article  PubMed  Google Scholar 

  202. Wong F, Raina N, Richardson R. Molecular adsorbent recirculating system is ineffective in the management of type 1 hepatorenal syndrome in patients with cirrhosis and ascites who have failed vasoconstrictor treatment. Gut. 2010;59:381–6.

    Article  CAS  PubMed  Google Scholar 

  203. Mitzner SR, Stange J, Klammt S, et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS: Results of a prospective, randomized, controlled clinical trial. Liver Transpl. 2000;6:277–86.

    Article  CAS  PubMed  Google Scholar 

  204. Heemann U, Treichel U, Loock J, et al. A dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology. 2002;36:949–58.

    CAS  PubMed  Google Scholar 

  205. Ochs A, Rössle M, Haag K, Hauenstein KH, et al. The transjugular intrahepatic portosystemic stent-shunt procedure for refractory ascites. N Engl J Med. 1995;332:1192–7.

    Article  CAS  PubMed  Google Scholar 

  206. Somberg KA, Lake JR, Tomlanovich SJ, et al. Transjugular intrahepatic portosystemic shunts for refractory ascites: assessment of clinical and hormonal response and renal function. Hepatology. 1995;21:709–16.

    CAS  PubMed  Google Scholar 

  207. Ginès P, Uriz J, Calahorra B, Garcia-Tsao G, et al. Transjugular intrahepatic portosystemic shunting versus paracentesis plus albumin for refractory ascites in cirrhosis. Gastroenterology. 2002;123:1839–47.

    Article  PubMed  Google Scholar 

  208. Michl P, Gulberg V, Bilzer M, Waggershauser T, Reiser M, Gerbes AL. Transjugular intrahepatic portosystemic shunt for cirrhosis and ascites: effects in patients with organic or functional renal failure. Scand J Gastroenterol. 2000;35:654–8.

    Article  CAS  PubMed  Google Scholar 

  209. Marcela K. Hepatorenal syndrome. World J Gastroenterol. 2012;18(36):4978–84.

    Article  Google Scholar 

  210. Fasolato S, Angeli P, Dallagnese L, et al. Renal failure and bacterial infections in patients with cirrhosis: epidemiology and clinical features. Hepatology. 2007;45:223–9.

    Article  PubMed  Google Scholar 

  211. Thabut D, Massard J, Gangloff A, et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology. 2007;46:1872–82.

    Article  PubMed  Google Scholar 

  212. Dundar HZ, Yılmazlar T, et al. Management of hepatorenal syndrome. World J Nephrol. 2015 May 6;4(2):277–86.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Fernandez J, Navasa M, Planas R, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology. 2007;133:818–24.

    Article  CAS  PubMed  Google Scholar 

  214. Huang K, Hu JH, Wang HF, He WP, Chen J, Duan XZ, Zhang AM, Liu XY. Survival and prognostic factors in hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol. 2011;17(29):3448–52.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kaufman CE, Mckee PA. Essentials of pathophysiology. 1st ed. Beijing: Peaking Union Medical College Press; 2002. p. 547.

    Google Scholar 

  216. Jianzhi W, Huiming J. Textbook of pathophysiology. 1st ed. Beijing: People’s Medical Publishing House; 2007. p. 13.

    Google Scholar 

  217. Juha P Kokko. Disorder of fluid volume, electrolyte, and acid-base balance. J Claude Bennett, FredPlum. Cecil textbook of medicine. 20th ed. W.B.Saunders company, 1996, 525.

    Google Scholar 

  218. Henriksen JH, Bendtsen F, Møller S. Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction. Eur J Gastroenterol Hepatol. 2015 Aug;27(8):920–7.

    Article  CAS  PubMed  Google Scholar 

  219. Benjaminov FS. The pathophysiology of ascites formation in cirrhosis of the liver. Harefuah. 2002 Aug;141(8):721–5.

    PubMed  Google Scholar 

  220. Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, Thompson CJ. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med. 2013 Oct;126(10 Suppl 1):S1–42.

    Article  PubMed  Google Scholar 

  221. Cárdenas A, Solà E, Rodríguez E, Barreto R, Graupera I, Pavesi M, Saliba F, Welzel T, Martinez-Gonzalez J, Gustot T, Bernardi M, Arroyo V, Ginès P; CANONIC study investigators of the EASL-CLIF Consortium. Hyponatremia influences the outcome of patients with acute-on-chronic liver failure: an analysis of the CANONIC study. Crit Care. 2014, 18(6):700.

    Google Scholar 

  222. Diercks DB, Shumaik GM, Harrigan RA, Brady WJ, Chan TC. Electrocardiographic manifestations: electrolyte abnormalities. J Emerg Med. 2004;27(2):153–60.

    Article  PubMed  Google Scholar 

  223. Li XM, Li YX, Meng QH, Duan ZH, Hou W, Li J. Characteristics of acid-base balance in patients with chronic severe hepatitis: analysis of 126 cases. Zhonghua Yi Xue Za Zhi. 2006 Aug 15;86(30):2131–3(in Chinese).

    Google Scholar 

  224. Kaufman CE, Mckee PA. Essentials of pathophysiology. 1st ed. Beijing: Peaking Union Medical College Press; 2002. p. 569.

    Google Scholar 

  225. Abelow B. Understanding acid-base. 1st ed. Baltimore: Lippincott, Williams&Wilkins; 1998. p. 51.

    Google Scholar 

  226. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, et al. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35:716–21.

    Article  PubMed  Google Scholar 

  227. (2013) [Consensus on the diagnosis and treatment of hepatic encephalopathy]. Zhonghua Gan Zang Bing Za Zhi 21: 641–651.

    Google Scholar 

  228. Bajaj JS, Cordoba J, Mullen KD, Amodio P, Shawcross DL, et al. Review article: the design of clinical trials in hepatic encephalopathy--an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. Aliment Pharmacol Ther. 2011;33:739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lauridsen MM, Poulsen L, Rasmussen CK, Hogild M, Nielsen MK, et al. Effects of common chronic medical conditions on psychometric tests used to diagnose minimal hepatic encephalopathy. Metab Brain Dis. 2016;31:267–72.

    Article  CAS  PubMed  Google Scholar 

  230. Tripathi S, Tripathi YB. Hepatic encephalopathy: cause and possible management with botanicals. Recent Patents Inflamm Allergy Drug Discov. 2014;8:185–91.

    Article  CAS  Google Scholar 

  231. Butterworth RF. Pathophysiology of brain dysfunction in hyperammonemic syndromes: The many faces of glutamine. Mol Genet Metab. 2014;113:113–7.

    Article  CAS  PubMed  Google Scholar 

  232. Prakash R, Mullen KD. Mechanisms, diagnosis and management of hepatic encephalopathy. Nat Rev Gastroenterol Hepatol. 2010;7:515–25.

    Article  PubMed  Google Scholar 

  233. Ott P, Vilstrup H. Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis. 2014;29:901–11.

    Article  CAS  PubMed  Google Scholar 

  234. Jones EA, Mullen KD. Theories of the pathogenesis of hepatic encephalopathy. Clin Liver Dis. 2012;16:7–26.

    Article  PubMed  Google Scholar 

  235. Gooday R, Hayes PC, Bzeizi K, O’Carroll RE. Benzodiazepine receptor antagonism improves reaction time in latent hepatic encephalopathy. Psychopharmacology. 1995;119:295–8.

    Article  CAS  PubMed  Google Scholar 

  236. Jones EA. Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab Brain Dis. 2002;17:275–81.

    Article  CAS  PubMed  Google Scholar 

  237. Montana V, Verkhratsky A, Parpura V. Pathological role for exocytotic glutamate release from astrocytes in hepatic encephalopathy. Curr Neuropharmacol. 2014;12:324–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ding S, Yang J, Liu L, Ye Y, Wang X, et al. Elevated dopamine induces minimal hepatic encephalopathy by activation of astrocytic NADPH oxidase and astrocytic protein tyrosine nitration. Int J Biochem Cell Biol. 2014;55:252–63.

    Article  CAS  PubMed  Google Scholar 

  239. Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014;29:9–17.

    Article  CAS  PubMed  Google Scholar 

  240. Kobtan AA, El-Kalla FS, Soliman HH, Zakaria SS, Goda MA. Higher Grades and Repeated Recurrence of Hepatic Encephalopathy May Be Related to High Serum Manganese Levels. Biol Trace Elem Res. 2016;169:153–8.

    Article  CAS  PubMed  Google Scholar 

  241. Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition. 2015;31:14–20.

    Article  CAS  PubMed  Google Scholar 

  242. Shawcross DL, Wright G, Olde Damink SW, Jalan R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab Brain Dis. 2007;22:125–38.

    Article  CAS  PubMed  Google Scholar 

  243. Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40:247–54.

    Article  CAS  PubMed  Google Scholar 

  244. Merola J, Chaudhary N, Qian M, Jow A, Barboza K, et al. Hyponatremia: a risk factor for early overt encephalopathy after transjugular intrahepatic portosystemic shunt creation. J Clin Med. 2014;3:359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gaduputi V, Chandrala C, Abbas N, Tariq H, Chilimuri S, et al. Prognostic significance of hypokalemia in hepatic encephalopathy. Hepato-Gastroenterology. 2014;61:1170–4.

    PubMed  Google Scholar 

  246. Tsai CF, Chen MH, Wang YP, Chu CJ, Huang YH, et al. Proton pump inhibitors increase risk for hepatic encephalopathy in patients with cirrhosis in population study. Gastroenterology. 2016;

    Google Scholar 

  247. Jepsen P, Christensen J, Weissenborn K, Watson H, Vilstrup H. Epilepsy as a risk factor for hepatic encephalopathy in patients with cirrhosis: a cohort study. BMC Gastroenterol. 2016;16:77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Casadaban LC, Parvinian A, Minocha J, Lakhoo J, Grant CW, et al. Clearing the confusion over hepatic encephalopathy after tips creation: incidence, prognostic factors, and clinical outcomes. Dig Dis Sci. 2015;60:1059–66.

    Article  PubMed  Google Scholar 

  249. Wang JY, Zhang NP, Chi BR, Mi YQ, Meng LN, et al. Prevalence of minimal hepatic encephalopathy and quality of life evaluations in hospitalized cirrhotic patients in China. World J Gastroenterol. 2013;19:4984–91.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Borentain P, Soussan J, Resseguier N, Botta-Fridlund D, Dufour JC, et al. The presence of spontaneous portosystemic shunts increases the risk of complications after transjugular intrahepatic portosystemic shunt (TIPS) placement. Diagn Interv Imaging. 2016;97:643–50.

    Article  CAS  PubMed  Google Scholar 

  251. Nardelli S, Gioia S, Pasquale C, Pentassuglio I, Farcomeni A, et al. Cognitive impairment predicts the occurrence of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. Am J Gastroenterol. 2016;111:523–8.

    Article  PubMed  Google Scholar 

  252. Brenner M, Butz M, May ES, Kahlbrock N, Kircheis G, et al. Patients with manifest hepatic encephalopathy can reveal impaired thermal perception. Acta Neurol Scand. 2015;132:156–63.

    Article  CAS  PubMed  Google Scholar 

  253. Kircheis G, Fleig WE, Gortelmeyer R, Grafe S, Haussinger D. Assessment of low-grade hepatic encephalopathy: a critical analysis. J Hepatol. 2007;47:642–50.

    Article  PubMed  Google Scholar 

  254. Hassanein TI, Hilsabeck RC, Perry W. Introduction to the Hepatic Encephalopathy Scoring Algorithm (HESA). Dig Dis Sci. 2008;53:529–38.

    Article  PubMed  Google Scholar 

  255. Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114:188–93.

    Article  CAS  PubMed  Google Scholar 

  256. Qureshi MO, Khokhar N, Shafqat F. Ammonia levels and the severity of hepatic encephalopathy. J Coll Physicians Surg Pak. 2014;24:160–3.

    PubMed  Google Scholar 

  257. Haussinger D, Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut. 2008;57:1156–65.

    Article  CAS  PubMed  Google Scholar 

  258. Dabos KJ, Parkinson JA, Sadler IH, Plevris JN, Hayes PC. (1)H nuclear magnetic resonance spectroscopy-based metabonomic study in patients with cirrhosis and hepatic encephalopathy. World J Hepatol. 2015;7:1701–7.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Amodio P, Campagna F, Olianas S, Iannizzi P, Mapelli D, et al. Detection of minimal hepatic encephalopathy: normalization and optimization of the Psychometric Hepatic Encephalopathy Score. A neuropsychological and quantified EEG study. J Hepatol. 2008;49:346–53.

    Article  PubMed  Google Scholar 

  260. Sharma P, Sharma BC, Puri V, Sarin SK. Critical flicker frequency: diagnostic tool for minimal hepatic encephalopathy. J Hepatol. 2007;47:67–73.

    Article  CAS  PubMed  Google Scholar 

  261. Romero-Gomez M, Cordoba J, Jover R, del Olmo JA, Ramirez M, et al. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology. 2007;45:879–85.

    Article  PubMed  Google Scholar 

  262. Olesen SS, Gram M, Jackson CD, Halliday E, Sandberg TH, et al. Electroencephalogram variability in patients with cirrhosis associates with the presence and severity of hepatic encephalopathy. J Hepatol. 2016;65:517–23.

    Article  PubMed  Google Scholar 

  263. Jackson CD, Gram M, Halliday E, Olesen SS, Sandberg TH, et al. New spectral thresholds improve the utility of the electroencephalogram for the diagnosis of hepatic encephalopathy. Clin Neurophysiol. 2016;127:2933–41.

    Article  PubMed  Google Scholar 

  264. Bajaj JS, Wade JB, Sanyal AJ. Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology. 2009;50:2014–21.

    Article  PubMed  Google Scholar 

  265. Maharshi S, Sharma BC, Sachdeva S, Srivastava S, Sharma P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clin Gastroenterol Hepatol. 2016;14:454–60.

    Article  PubMed  Google Scholar 

  266. Amodio P, Canesso F, Montagnese S. Dietary management of hepatic encephalopathy revisited. Curr Opin Clin Nutr Metab Care. 2014;17:448–52.

    Article  PubMed  Google Scholar 

  267. Sawhney R, Jalan R. Liver: the gut is a key target of therapy in hepatic encephalopathy. Nat Rev Gastroenterol Hepatol. 2015;12:7–8.

    Article  PubMed  Google Scholar 

  268. Rahimi RS, Singal AG, Cuthbert JA, Rockey DC. Lactulose vs polyethylene glycol 3350--electrolyte solution for treatment of overt hepatic encephalopathy: the HELP randomized clinical trial. JAMA Intern Med. 2014;174:1727–33.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Rahimi RS, Rockey DC. Novel ammonia-lowering agents for hepatic encephalopathy. Clin Liver Dis. 2015;19:539–49.

    Article  PubMed  Google Scholar 

  270. Rai R, Ahuja CK, Agrawal S, Kalra N, Duseja A, et al. Reversal of low-grade cerebral edema after lactulose/rifaximin therapy in patients with cirrhosis and minimal hepatic encephalopathy. Clin Transl Gastroenterol. 2015;6:e111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Shavakhi A, Hashemi H, Tabesh E, Derakhshan Z, Farzamnia S, et al. Multistrain probiotic and lactulose in the treatment of minimal hepatic encephalopathy. J Res Med Sci. 2014;19:703–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Morgan MY, Hawley KE. Lactitol vs. lactulose in the treatment of acute hepatic encephalopathy in cirrhotic patients: a double-blind, randomized trial. Hepatology. 1987;7:1278–84.

    Article  CAS  PubMed  Google Scholar 

  273. Agrawal A, Sharma BC, Sharma P, Sarin SK. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am J Gastroenterol. 2012;107:1043–50.

    Article  CAS  PubMed  Google Scholar 

  274. Paik YH, Lee KS, Han KH, Song KH, Kim MH, et al. Comparison of rifaximin and lactulose for the treatment of hepatic encephalopathy: a prospective randomized study. Yonsei Med J. 2005;46:399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Bajaj JS, Barrett AC, Bortey E, Paterson C, Forbes WP. Prolonged remission from hepatic encephalopathy with rifaximin: results of a placebo crossover analysis. Aliment Pharmacol Ther. 2015;41:39–45.

    Article  CAS  PubMed  Google Scholar 

  276. Kimer N, Krag A, Moller S, Bendtsen F, Gluud LL. Systematic review with meta-analysis: the effects of rifaximin in hepatic encephalopathy. Aliment Pharmacol Ther. 2014;40:123–32.

    Article  CAS  PubMed  Google Scholar 

  277. Mullen KD, Sanyal AJ, Bass NM, Poordad FF, Sheikh MY, et al. Rifaximin is safe and well tolerated for long-term maintenance of remission from overt hepatic encephalopathy. Clin Gastroenterol Hepatol. 2014;e12392:1390–7.

    Article  CAS  Google Scholar 

  278. Sidhu SS, Goyal O, Parker RA, Kishore H, Sood A. Rifaximin vs. lactulose in treatment of minimal hepatic encephalopathy. Liver Int. 2016;36:378–85.

    Article  CAS  PubMed  Google Scholar 

  279. Lunia MK, Sharma BC, Sharma P, Sachdeva S, Srivastava S. Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol. 2014;12:1003–1008.e1001.

    Article  PubMed  Google Scholar 

  280. Saab S, Suraweera D, Au J, Saab EG, Alper TS, et al. Probiotics are helpful in hepatic encephalopathy: a meta-analysis of randomized trials. Liver Int. 2016;36:986–93.

    Article  CAS  PubMed  Google Scholar 

  281. Sharma P, Sharma BC, Puri V, Sarin SK. An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2008;20:506–11.

    Article  CAS  PubMed  Google Scholar 

  282. Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147:1327–37.

    Article  CAS  PubMed  Google Scholar 

  283. Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia. Adv Drug Deliv Rev. 2015;90:55–68.

    Article  CAS  PubMed  Google Scholar 

  284. Diaz-Herrero MM, del Campo JA, Carbonero-Aguilar P, Vega-Perez JM, Iglesias-Guerra F, et al. THDP17 decreases ammonia production through glutaminase inhibition. A new drug for hepatic encephalopathy therapy. PLoS One. 2014;9:e109787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Gluud LL, Vilstrup H, Morgan MY (2016) Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev: Cd003044.

    Google Scholar 

  286. Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology. 2007;46:514–9.

    Article  CAS  PubMed  Google Scholar 

  287. Poo JL, Gongora J, Sanchez-Avila F, Aguilar-Castillo S, Garcia-Ramos G, et al. Efficacy of oral L-ornithine-L-aspartate in cirrhotic patients with hyperammonemic hepatic encephalopathy. Results of a randomized, lactulose-controlled study. Ann Hepatol. 2006;5:281–8.

    Article  PubMed  Google Scholar 

  288. Rockey DC, Vierling JM, Mantry P, Ghabril M, Brown RS Jr, et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology. 2014;59:1073–83.

    Article  CAS  PubMed  Google Scholar 

  289. Mousa N, Abdel-Razik A, Zaher A, Hamed M, Shiha G, et al. The role of antioxidants and zinc in minimal hepatic encephalopathy: a randomized trial. Therap Adv Gastroenterol. 2016;9:684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Abdelaziz RR, Elkashef WF, Said E. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy. Environ Toxicol Pharmacol. 2015;40:259–67.

    Article  CAS  PubMed  Google Scholar 

  291. Blei AT. Is it worth removing albumin-bound substances in hepatic encephalopathy? Z Gastroenterol. 2001;39(Suppl 2):8.

    Article  PubMed  Google Scholar 

  292. Gluud LL, Dam G, Les I, Cordoba J, Marchesini G, et al. (2015) Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev: Cd001939.

    Google Scholar 

  293. Morgan MY, Blei A, Grungreiff K, Jalan R, Kircheis G, et al. The treatment of hepatic encephalopathy. Metab Brain Dis. 2007;22:389–405.

    Article  PubMed  Google Scholar 

  294. Ahboucha S, Butterworth RF. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int. 2008;52:575–87.

    Article  CAS  PubMed  Google Scholar 

  295. Torres-Vega MA, Vargas-Jeronimo RY, Montiel-Martinez AG, Munoz-Fuentes RM, Zamorano-Carrillo A, et al. Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acute hyperammonemia. Gene Ther. 2015;22:58–64.

    Article  CAS  PubMed  Google Scholar 

  296. Bai M, He C, Yin Z, Niu J, Wang Z, et al. Randomised clinical trial: L-ornithine-L-aspartate reduces significantly the increase of venous ammonia concentration after TIPSS. Aliment Pharmacol Ther. 2014;40:63–71.

    Article  CAS  PubMed  Google Scholar 

  297. Luo L, Fu S, Zhang Y, Wang J. Early diet intervention to reduce the incidence of hepatic encephalopathy in cirrhosis patients: post-Transjugular Intrahepatic Portosystemic Shunt (TIPS) findings. Asia Pac J Clin Nutr. 2016;25:497–503.

    PubMed  Google Scholar 

  298. Lynn AM, Singh S, Congly SE, Khemani D, Johnson DH, et al. Embolization of portosystemic shunts for treatment of medically refractory hepatic encephalopathy. Liver Transpl. 2016;22:723–31.

    Article  PubMed  PubMed Central  Google Scholar 

  299. Hung PC, Wang HS, Hsia SH, Wong AM. Plasmapheresis as adjuvant therapy in Stevens-Johnson syndrome and hepatic encephalopathy. Brain and Development. 2014;36:356–8.

    Article  PubMed  Google Scholar 

  300. Wong RJ, Gish RG, Ahmed A. Hepatic encephalopathy is associated with significantly increased mortality among patients awaiting liver transplantation. Liver Transpl. 2014;20:1454–61.

    Article  PubMed  Google Scholar 

  301. Atluri DK, Asgeri M, Mullen KD. Reversibility of hepatic encephalopathy after liver transplantation. Metab Brain Dis. 2010;25:111–3.

    Article  PubMed  Google Scholar 

  302. Fallon MB, Abrams GA. Pulmonary dysfunction in chronic liver disease. Hepatology. 2000;32(4 Pt 1):859–65.

    Article  CAS  PubMed  Google Scholar 

  303. Lange PA, Stoller JK. The hepatopulmonary syndrome. Ann Intern Med. 1995;122(7):521–9.

    Article  CAS  PubMed  Google Scholar 

  304. Ford RM, Sakaria SS, Subramanian RM. Critical care management of patients before liver transplantation. Transplant Rev (Orlando). 2010;24(4):190–206.

    Article  Google Scholar 

  305. Fuhrmann V, Jager B, Zubkova A, Drolz A. Hypoxic hepatitis - epidemiology, pathophysiology and clinical management. Wien Klin Wochenschr. 2010;122(5–6):129–39.

    Article  PubMed  Google Scholar 

  306. Breuer O, Shteyer E, Wilschanski M, Perles Z, Cohen-Cymberknoh M, Kerem E, Shoseyov D. Hepatopulmonary Syndrome in Patients With Cystic Fibrosis and Liver Disease. Chest. 2016;149(2):e35–8.

    Article  PubMed  Google Scholar 

  307. Pouriki S, Alexopoulou A, Chrysochoou C, Raftopoulos L, Papatheodoridis G, Stefanadis C, Pectasides D. Left ventricle enlargement and increased systolic velocity in the mitral valve are indirect markers of the hepatopulmonary syndrome. Liver Int. 2011;31(9):1388–94.

    Article  CAS  PubMed  Google Scholar 

  308. Rodriguez-Roisin R, Krowka MJ. Hepatopulmonary syndrome--a liver-induced lung vascular disorder. N Engl J Med. 2008;358(22):2378–87.

    Article  CAS  PubMed  Google Scholar 

  309. Zhang ZJ, Yang CQ. Progress in investigating the pathogenesis of hepatopulmonary syndrome. Hepatobiliary Pancreat Dis Int. 2010;9(4):355–60.

    CAS  PubMed  Google Scholar 

  310. Schenk P, Schoniger-Hekele M, Fuhrmann V, Madl C, Silberhumer G, Muller C. Prognostic significance of the hepatopulmonary syndrome in patients with cirrhosis. Gastroenterology. 2003;125(4):1042–52.

    Article  PubMed  Google Scholar 

  311. Swanson KL, Wiesner RH, Krowka MJ. Natural history of hepatopulmonary syndrome: Impact of liver transplantation. Hepatology. 2005;41(5):1122–9.

    Article  PubMed  Google Scholar 

  312. Hoeper MM, Krowka MJ, Strassburg CP. Portopulmonary hypertension and hepatopulmonary syndrome. Lancet. 2004;363(9419):1461–8.

    Article  PubMed  Google Scholar 

  313. Schenk P, Fuhrmann V, Madl C, Funk G, Lehr S, Kandel O, Muller C. Hepatopulmonary syndrome: prevalence and predictive value of various cut offs for arterial oxygenation and their clinical consequences. Gut. 2002;51(6):853–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Krowka MJ, Fallon MB, Kawut SM, Fuhrmann V, Heimbach JK, Ramsay MA, Sitbon O, Sokol RJ. International Liver Transplant Society Practice Guidelines: Diagnosis and Management of Hepatopulmonary Syndrome and Portopulmonary Hypertension. Transplantation. 2016;100(7):1440–52.

    Article  PubMed  Google Scholar 

  315. Krowka MJ. Hepatopulmonary syndrome: monitoring at your fingertip. Dig Dis Sci. 2011;56(6):1599–600.

    Article  PubMed  Google Scholar 

  316. Naeije R. Hepatopulmonary syndrome and portopulmonary hypertension. Swiss Med Wkly. 2003;133(11–12):163–9.

    PubMed  Google Scholar 

  317. Goldberg DS, Fallon MB. The Art and Science of Diagnosing and Treating Lung and Heart Disease Secondary to Liver Disease. Clin Gastroenterol Hepatol. 2015;13(12):2118–27.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Cuadrado A, Diaz A, Iruzubieta P, Salcines JR, Crespo J. Hepatopulmonary syndromeGastroenterol Hepatol. 2015;38(6):398–408.

    Article  PubMed  Google Scholar 

  319. Mukaida N, Ishikawa Y, Ikeda N, Fujioka N, Watanabe S, Kuno K, Matsushima K. Novel insight into molecular mechanism of endotoxin shock: biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-kappaB and regulation of cytokine production/action through beta2 integrin in vivo. J Leukoc Biol. 1996 Feb;59(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  320. Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991;5:2652–60.

    Article  CAS  PubMed  Google Scholar 

  321. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007 Oct 18;449(7164):819–26.

    Article  CAS  PubMed  Google Scholar 

  322. Raetz CRH. Biochemistry of endotoxins. Annu Annu Rev Biochem. 1990;59:129–70.

    Article  CAS  PubMed  Google Scholar 

  323. Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection. Methods Mol Biol. 2010;618:137–54.

    Article  CAS  PubMed  Google Scholar 

  324. Magalhães PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa A Jr. Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci. 2007;10(3):388–404.

    PubMed  Google Scholar 

  325. Eckburg PB, Bik EM, Bernstein CN. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, Degnan PH, Booth CJ, Yu H, Goodman AL. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science. 2015 Jan 9;347(6218):170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Janelsins BM, Lu M, Datta SK. Altered inactivation of commensal LPS due to acyloxyacyl hydrolase deficiency in colonic dendritic cells impairs mucosal Th17 immunity. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):373–378.

    Article  CAS  Google Scholar 

  328. Landsberger M, Zhou J, Wilk S, Thaumüller C, Pavlovic D, Otto M, Whynot S, Hung O, Murphy MF, Cerny V, Felix SB, Lehmann C. Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 reduces leukocyte adhesion within the intestinal microcirculation in experimental endotoxemia in rats. Crit Care. 2010;14(6):R223. doi: 10

    Article  PubMed  PubMed Central  Google Scholar 

  329. Griffiths KL, Tan JK, O’Neill HC. Characterization of the effect of LPS on dendritic cell subset discrimination in spleen. J Cell Mol Med. 2014;18(9):1908–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Nguyen DN, Jiang P, Jacobsen S, Sangild PT, Bendixen E, Chatterton DE. Protective effects of transforming growth factor β2 in intestinal epithelial cells by regulation of proteins associated with stress and endotoxin responses. PLoS One. 2015;10(2):e0117608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Thompson PA, Kitchens RL. Native high-density lipoprotein augments monocyte responses to lipopolysaccharide (LPS) by suppressing the inhibitory activity of LPS-binding protein. J Immunol. 2006;177(7):4880–7.

    Article  CAS  PubMed  Google Scholar 

  332. Strandberg KL, Richards SM, Tamayo R, Reeves LT, Gunn JS. An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice. PLoS One. 2012;7(11):e49588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Mehrzad J, Dosogne H, De Spiegeleer B, Duchateau L, Burvenich C. Bovine blood neutrophil acyloxyacyl hydrolase (AOAH) activity during endotoxin and coliform mastitis. Vet Res. 2007;38(5):655–68.

    Article  CAS  PubMed  Google Scholar 

  334. Schmiel DH, Moran EE, Keiser PB, Brandt BL, Zollinger WD. Importance of antibodies to lipopolysaccharide in natural and vaccine-induced serum bactericidal activity against Neisseria meningitidis group B. Infect Immun. 2011 Oct;79(10):4146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. E Ravikumar V, Shivashangari KS, Devaki T Effect of Tridax procumbens on liver antioxidant defense system during lipopolysaccharide-induced hepatitis in D-galactosamine sensitised rats. Mol Cell Biochem 2005;269(1–2):131–136.

    Article  CAS  PubMed  Google Scholar 

  336. Zhou H, Liang H, Li ZF, Xiang H, Liu W, Li JG. Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through α7 nicotinic acetylcholine receptors. Shock. 2013;40(2):144–51.

    Article  CAS  PubMed  Google Scholar 

  337. Hayani KC, Guerrero ML, Ruiz-Palacios GM, Gomez HF, Cleary TG. Evidence for long-term memory of the mucosal immune system: milk secretory immunoglobulin A against Shigella lipopolysaccharides. J ClinMicrobiol. 1991 Nov;29(11):2599–603.

    CAS  Google Scholar 

  338. Wang JH, Bose S, Kim GC, Hong SU, Kim JH, Kim JE, Kim H. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota. PLoS One. 2014;9(1):e86117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  339. Wang H, Xu DX, Lv JW, Ning H, Wei W. Melatonin attenuates lipopolysaccharide (LPS)-induced apoptotic liver damage in D-galactosamine-sensitized mice. Toxicology. 2007;237(1–3):49–57.

    Article  CAS  PubMed  Google Scholar 

  340. JeralaR. Structural biology of the LPS recognition. Int J Med Microbiol 2007;297(5):353–363.

    Google Scholar 

  341. Wen M, Ma X, Cheng H, Jiang W, Xu X, Zhang Y, Zhang Y, Guo Z, Yu Y, Xu H, Qian C, Cao X, An H. Stk38 protein kinase preferentially inhibits TLR9-activated inflammatory responses by promoting MEKK2 ubiquitination in macrophages. Nat Commun. 2015;6:7167.

    Article  CAS  PubMed  Google Scholar 

  342. McDonald B, Jenne CN, Zhuo L, Kimata K, Kubes P. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia. Am J Physiol Gastrointest Liver Physiol. 2013;305(11):G797–806.

    Article  CAS  PubMed  Google Scholar 

  343. Barquero-Calvo E, Mora-Cartín R, Arce-Gorvel V, de Diego JL, Chacón-Díaz C, Chaves-Olarte E, Guzmán-Verri C, Buret AG, Gorvel JP, Moreno E. Brucella abortus induces the premature death of human neutrophils through the action of its lipopolysaccharide. PLoS Pathog. 2015;11(5):e1004853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Zullo JA, Nadel EP, Rabadi MM, Baskind MJ, Rajdev MA, Demaree CM, Vasko R, Chugh SS, Lamba R, Goligorsky MS, Ratliff BB. The secretome of hydrogel-coembedded endothelial progenitor cells and mesenchymal stem cells instructs macrophage polarization in endotoxemia. Stem Cells Transl Med 2015 May 6. pii: sctm.2014-0111.

    Google Scholar 

  345. Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, Jiao S, Gao Y, Liu C, Duan Z, Li D, He Y, Wei B, Wang H. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501–14.

    Article  PubMed  CAS  Google Scholar 

  346. Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med. 2015;372(17):1629–38.

    Article  CAS  PubMed  Google Scholar 

  347. La Mura V, Pasarín M, Rodriguez-Vilarrupla A, García-Pagán JC, Bosch J, Abraldes JG. Liver sinusoidal endothelial dysfunction after LPS administration: a role for inducible-nitric oxide synthase. J Hepatol. 2014;61(6):1321–7.

    Article  PubMed  CAS  Google Scholar 

  348. Feng A, Zhou G, Yuan X, Huang X, Zhang Z, Zhang T. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia. PLoS One. 2013;8(12):e80997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol. 2002;8(6):961–5.

    Article  PubMed  PubMed Central  Google Scholar 

  350. Lv X, Song JG, Li HH, Ao JP, Zhang P, Li YS, Song SL, Wang XR. Decreased hepatic peroxisome proliferator-activated receptor-γ contributes to increased sensitivity to endotoxin in obstructive jaundice. World J Gastroenterol. 2011;17(48):5267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Armstrong MT, Rickles FR, Armstrong PB. Capture of lipopolysaccharide (endotoxin) by the blood clot: a comparative study. PLoS One. 2013;8(11):e80192.

    Article  PubMed  PubMed Central  Google Scholar 

  352. Tarao K. So K, Moroi T, Ikeuchi T, Suyama T. Detection of endotoxin in plasma and ascitic fluid of patients with cirrhosis: its clinical significance. Gastroenterology. 1977;73(3):539–42.

    Article  CAS  PubMed  Google Scholar 

  353. Zijlstra JG, Tulleken JE, Ligtenberg JJ, de Boer P, van der Werf TS. p38-MAPK inhibition and endotoxin induced tubular dysfunction in men. J Endotoxin Res. 2004;10(6):402–5.

    Article  CAS  PubMed  Google Scholar 

  354. Chastre A, Bélanger M, Nguyen BN, Butterworth RF. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure. Liver Int. 2014 Mar;34(3):353–61.

    Article  CAS  PubMed  Google Scholar 

  355. Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, Malcangi V, Petrini F, Volta G, BobbioPallavicini FM, Rottoli F, Giunta F, Ronco C. Early use of polymyxin B hemoperfusion in abdominal septic shock: The EUPHAS randomized controlled trial. JAMA. 2009;301:2445–52.

    Article  CAS  PubMed  Google Scholar 

  356. Yoshino N, Endo M, Kanno H, et al. Polymyxins as novel and safe mucosal adjuvants to induce humoral immune responses in mice. PLoS One. 2013;8(4):e61643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Verhoef J, Visser MR. Neutrophil phagocytosis and killing: normal function and microbial evasion. The neutrophil; 1993. p. 109–37.

    Google Scholar 

  358. Baumberger C, Ulevitch RJ, Dayer JM. Modulation of endotoxic activity of lipopolysaccharide by high-density lipoprotein. Pathobiology. 1991;59:378–83.

    Article  CAS  PubMed  Google Scholar 

  359. Wittebole X, Castanares-Zapatero D, Laterre PF. Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediat Inflamm. 2010;2010:568396.

    Article  CAS  Google Scholar 

  360. Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011;147(4):868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Michlewska S, Dransfield I, Megson IL, et al. Macrophage phagocytosis of apoptotic neutrophils is critically regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents: key role for TNF-α. FASEB J. 2009;23(3):844–54.

    Article  CAS  PubMed  Google Scholar 

  362. Baue AE. MOF, MODS, and SIRS: what is in a name or an acronym? Shock. 2006;26(5):438–49.

    Article  CAS  PubMed  Google Scholar 

  363. Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest J. 1992;101(6):1481–3.

    Article  CAS  Google Scholar 

  364. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  365. Brigham KL, Meyrick B. Endotoxin and lung injury. Am Rev Respir Dis. 1986;133(5):913–27.

    CAS  PubMed  Google Scholar 

  366. Nolan JP. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology. 2010;52(5):1829–35.

    Article  CAS  PubMed  Google Scholar 

  367. Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R. Pathophysiology of septic acute kidney injury: What do we really know? Crit Care Med. 2008;36:S198–203.

    Article  PubMed  Google Scholar 

  368. Semeraro N, Ammollo CT, Semeraro F, et al. Sepsis, thrombosis and organ dysfunction. Thromb Res. 2012;129(3):290–5.

    Article  CAS  PubMed  Google Scholar 

  369. Yang R, Miki K, Oksala N, et al. Bile high-mobility group box 1 contributes to gut barrier dysfunction in experimental endotoxemia. Am J Phys Regul Integr Comp Phys. 2009;297(2):R362–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V. and Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, JX. et al. (2019). Main Complications of AECHB and Severe Hepatitis B (Liver Failure). In: Ning, Q. (eds) Acute Exacerbation of Chronic Hepatitis B. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1603-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1603-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1601-5

  • Online ISBN: 978-94-024-1603-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics