Skip to main content

Part of the book series: Synthese Library ((SYLI,volume 384))

Abstract

The paper examines Husserl’s (1859–1938) phenomenology and Hilbert’s (1862–1943) view of the foundations of mathematics against the backdrop of their lifelong friendship. After a brief account of the complementary nature of their early approaches, the paper focuses on Husserl’s Formale und transzendentale Logik (1929) viewed as a response to Hilbert’s “new foundations” developed in the 1920s. While both Husserl and Hilbert share a “mathematics first,” nonrevisionist approach toward mathematics, they disagree about the way in which the access to it should be construed: Hilbert wanted to reach it and show it consistent by his formalism on the basis of sensuous signs, Husserl held that there should be a reduction to elementary judgements about individuals. Husserl’s reduction does not establish the consistency of mathematics but he claims it is important for the considerations of truth.

I wish to thank Øystein Linnebo, Matti Eklund, Besim Karakadilar, Mitsuhiro Okada, Volker Peckhaus, and Sören Stenlund for valuable feedback on earlier versions of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Peckhaus 1990, 2016–208; Husserl Archive Mitteilungsblatt 34, 12, see also Hill & Da Silva 2013.

  2. 2.

    Peckhaus 1990, 208–210.

  3. 3.

    The most recent details of Husserl’s and Hilbert’s friendship and how it also extended to their families have been documented in the Husserl Archive Leuven Mitteilungsblatt 36, 2013.

  4. 4.

    Husserl 1994, 119.

  5. 5.

    Husserl 1974. Henceforth cited as FTL. English translations refer to (Husserl 1969) unless otherwise indicated.

  6. 6.

    FTL, §89b.

  7. 7.

    cf. Ferreirós 2007, 31. Soon after the move to Göttingen, Husserl’s wife, Malvine, reported that in Göttingen a „ganz anderer Zug im geistigen Leben der Universität als in Halle <herrsche>, u. besonders sind es die Mathematiker (Klein u. Hilbert), die Edmund in ihren Kreis ziehen u. ihn <…> anregen.” David Hilbert and Edmund Husserl developed a „tiefe achtungsvolle Freundschaft” which, according to Husserl’s wife, was a consequence of the „gleichen Ethos einer restlosen Hingabe an sein Werk” (Husserl Archive Mitteilungsblatt 2013, 15).

  8. 8.

    Rowe 1989, 198.

  9. 9.

    Cited from Rowe 1989, 212.

  10. 10.

    Husserl 1975, henceforth cited as Prolegomena, §69, translation modified.

  11. 11.

    Mahnke 1977 [1923], 75.

  12. 12.

    Prolegomena, §71.

  13. 13.

    Loc. cit.

  14. 14.

    Hilbert 1900a, 1092–1093.

  15. 15.

    Hilbert 1950, 15.

  16. 16.

    Hilbert 1900a, 1094.

  17. 17.

    Awodey & Reck 2001, 11–20.

  18. 18.

    Hilbert 1900a, 1095.

  19. 19.

    Hilbert 1900b, 1104.

  20. 20.

    Sieg 1999, 12.

  21. 21.

    Op. cit., 23, Sieg 2013, 115.

  22. 22.

    Mahnke 1977, 76–77.

  23. 23.

    Op. cit., 465.

  24. 24.

    Op. cit., 464–465.

  25. 25.

    Op. cit., 465.

  26. 26.

    Op. cit., 467.

  27. 27.

    Rowe 1989, 199–200.

  28. 28.

    Op. cit., 211.

  29. 29.

    Sieg 2013, 106.

  30. 30.

    Op. cit., 316.

  31. 31.

    Sieg 2009, 450.

  32. 32.

    In Husserl’s words: “Eine axiomatisch definierte Mannigfaltigkeit kann die Eigenschaft haben, daβ jedes ihrer Objekte operativ bestimmbar ist, und zwar eindeutig. D. h. jedes Objekt, das für sie als existierend definiert ist (in die Sphäre der Existenz gehört, welche die Axiome umschreiben), ist durch die zugrunde liegenden oder eine endliche Zahl willkürlich anzunehmender bestimmter Existenzen unmittelbar oder mittelbar zu bestimmen, und zwar eindeutig. Eine solche Mannigfaltigkeit ist eine mathematische und ist definit (d.h. ihr Axiomensystem ist definit). […] Relativ definit ist ein Axiomensystem, wenn es zwar für sein Existential gebiet keine Axiome mehr zuläβt, aber es zuläβt, daβ weiteres Gebiet dieselben und dann natürlich auch neue Axiome gelten. Neue Axiome, denn die bloβ alten Axiome bestimmen ja nur das alte Gebiet. Relativ definit ist die Sphäre der ganzen, der gebrochenen Zahlen, der rationalen Zahlen, ebenso der diskreten Doppelreihenzahlen (komplexen Zahlen). Absolut definit nenne ich eine Mannigfaltigkeit, wenn es keine andere Mannigfaltigkeit gibt, welche dieselben Axiome hat wie sie (alle zusammen). Kontinuierliche Zahlenreihe, kontinuierliche Doppelzahlenreihe” (Schuhmann & Schuhmann 2001, 101–102).

  33. 33.

    Hilbert 1900, 1094.

  34. 34.

    Op. cit., 103.

  35. 35.

    Op. cit., 102.

  36. 36.

    Husserl 1950, §72.

  37. 37.

    Mahnke 1977, 80.

  38. 38.

    Hence, it has given a rise to several competing interpretations. See for example Lohmar (1989), Da Silva (2000), Centrone (2010), Hartimo (2007), Recently Mitsuhiro Okada has defended a computational view of Husserl’s completeness (Okada 2013).

  39. 39.

    This paper was originally written in 2013 and represents my thoughts about the matter then. More papers on the topic have been published since, most notably, Da Silva (2015) and Hartimo and Okada (2015), and most recently in Hartimo (2016).

  40. 40.

    Mahnke 1977, 77.

  41. 41.

    Within a few months after Husserl’s Definitheit lectures Hilbert showed Husserl his so called Memoir, the second foundations to geometry, on which Husserl took detailed notes (cf. Hartimo 2008). Husserl’s interest in it, like Hilbert’s, shows his unprejudiced interest in different kinds of axiomatic systems. Husserl was also well aware about the set theoretical paradoxes that plagued Hilbert’s school. Zermelo’s version of ‘Russell’s paradox’ has been found written down by Husserl (Husserl 1979, 399). Hilbert also showed Husserl his correspondence with Frege about the nature of the axioms in geometry. Husserl’s comment to the exchange is that Frege does not understand Hilbert’s axiomatic foundations of geometry (Husserl 1970, 447–451). Husserl was also aware of the contents of Hilbert’s 1905 lectures thanks to Dietrich Mahnke, who sent the lecture notes for him. In that connection Husserl expressed the wish, „recht viel aus Hilberts Darstellungen zu lernen, wie es ja eigentlich selbstverständlich ist” (Husserl Archive Leuven Mitteilungsblatt 2013, 15).

  42. 42.

    Mahnke 1977, 78.

  43. 43.

    Op. cit., 79.

  44. 44.

    Loc. cit.

  45. 45.

    Op. cit., 80.

  46. 46.

    Op. cit., 80–81.

  47. 47.

    Op. cit., 81.

  48. 48.

    Op. cit., 82.

  49. 49.

    FTL, 11.

  50. 50.

    During his Freiburg years Husserl considered himself as an old friend of Hilbert’s household. Husserl visited Hilbert about which he reported to Heidegger that Hilbert’s reception had been very friendly, „Sehr freundschaftlich kam uns Hilbert entgegen” (Husserl to Heidegger 9.5.1928, Husserl-Archive Mitteilungsblatt 26, 2013, 16).

  51. 51.

    FTL, §69.

  52. 52.

    Hilbert 1927, 475.

  53. 53.

    FTL, §70a.

  54. 54.

    Op. cit., §71.

  55. 55.

    Op. cit., §13.

  56. 56.

    For a nice exposition of Husserl’s conception of logic in FTL, see Cavaillès 1970, 386–409.

  57. 57.

    Op. cit., §82.

  58. 58.

    Op. cit., §51.

  59. 59.

    Op. cit., §52.

  60. 60.

    Op. cit., §18.

  61. 61.

    Op. cit., §89a.

  62. 62.

    Op. cit., §89a.

  63. 63.

    Op. cit., §89b.

  64. 64.

    Loc. cit.

  65. 65.

    FTL, §89 a–b.

  66. 66.

    Op. cit., §90.

  67. 67.

    Op. cit., §89b.

  68. 68.

    Op. cit., §70a.

  69. 69.

    ‘Categorial intuition’ is Husserl’s term for perception of formal structures, typically states of affairs. From Husserl’s remarks it is difficult to say what everything could be an object of categorial intuition. Dietrich Mahnke and Oskar Becker discussed this matter and disagreed about it: Becker held that categorial intuition is restricted to human consciousness and that we cannot intuit transfinite elements. Mahnke thought that this is not the case, and that the consciousness in question is an ideal consciousness (Mancosu & Ryckman 2010, 350–355). Given Husserl’s overall non-revisionist attitude Mahnke’s view about the matter seems to be closer to Husserl’s intentions.

  70. 70.

    Ebbinghaus 2007, 156.

  71. 71.

    FTL, §34.

  72. 72.

    Hilbert, 1927, 475.

  73. 73.

    FTL, §70.

  74. 74.

    FTL, §82.

  75. 75.

    FTL, §82.

  76. 76.

    FTL, §82.

  77. 77.

    FTL, §19.

  78. 78.

    Sieg 2013, 17.

References

  • Husserl Archive, Mitteilungsblatt 34. Leuven 2011. http://hiw.kuleuven.be/hua/mitteilungsblatt/mitteilungsblatt34.pdf. Accessed 19 Dec 2013

  • Husserl Archive, Mitteilungsblatt 36, Leuven 2013. http://hiw.kuleuven.be/hua/mitteilungsblatt/mitteilungsblatt36.pdf. Accessed 19 Dec 2013

  • J. Cavaillès, On logic and the theory of science, in Phenomenology and the Natural Sciences, ed. by J.J. Kockelmans, T.J. Kisiel (Northwestern University Press, Evanston, 1970), pp. 353–409

    Google Scholar 

  • S. Centrone, Logic and Philosophy of Mathematics in the Early Husserl Springer, Dordrecht, 2010

    Book  Google Scholar 

  • J. Da Silva, Husserl’s two notions of completeness. Synthese 125, 417–438 (2000)

    Article  Google Scholar 

  • J. Da Silva, Husserl and Hilbert on completenes, still. Synthese (2015). doi:10.1007/s11229-015-0821-2

  • H.D. Ebbinghaus in cooperation with V. Peckhaus, Ernst Zermelo, An Approach to His Life and Work Springer, Berlin/Heidelberg/New York, 2007

    Google Scholar 

  • W. Ewald, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol II (Clarendon Press, Oxford, 1996)

    Google Scholar 

  • J. Ferreirós. Labyrinth of Thought, A History of Set Theory and Its Role in Modern Mathematics (Birkhäuser Verlag AG, Basel/Boston/Berlin, 2007)

    Google Scholar 

  • M. Hartimo, Towards completeness: Husserl on theories of manifolds 1890–1901. Synthese 156, 281–310 (2007)

    Article  Google Scholar 

  • M. Hartimo, From geometry to phenomenology. Synthese 162, 225–233 (2008)

    Article  Google Scholar 

  • M. Hartimo, M. Okada, Syntactic reduction in Husserl’s early phenomenology of arithmetic. Synthese (2015). doi:10.1007/s11229-015-0779-0

  • M. Hartimo, Husserl on completeness, definitely. Synthese (2016). doi:10.1007/s11229-016-1278-7

  • E. Hellinger, Logische Prinzipien des Mathematischen Denkens. Vorlesungen von Professor Dr. Hilbert im Sommer-Semester 1905, unpublished lecture notes (1905)

    Google Scholar 

  • D. Hilbert, 1900a, On the concept of number. In: Ewald (1996), pp. 1092–1095

    Google Scholar 

  • D. Hilbert, 1900b, From mathematical problems. In: Ewald (1996), pp. 1096–1105

    Google Scholar 

  • D. Hilbert, 1927, The foundations of mathematics. In: van Heijenoort (1967), pp. 464–479

    Google Scholar 

  • D. Hilbert, Foundations of Geometry. Translated by Leo Unger. Open Court, Illinois [1971], 1990. (Open Court, La Salle, 1950)

    Google Scholar 

  • D. Hilbert, Über die Grundlagen der Geometrie, Mathematische Annalen 56, 381–422 (1902). English translation in Hilbert (1990), 150–190

    Google Scholar 

  • C.O. Hill, J.J. da Silva, The Road Not Taken, On Husserl’s Philosophy of Logic and Mathematics (College Publications, London, 2013)

    Google Scholar 

  • E. Husserl, Ideen zu einer reinen Phänomenologie und phäneomenologischen Philosophie. Erstes Buch. Allgemeine Einführung in die reine Phänomenologie. Herausgegeben von Walter Biemel. Husserliana Band III. (Martinus Nijhoff, Haag, 1950). English translation: Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy. First book. General Introduction to a Pure Phenomenology (Martinus Nijhoff, The Hague/Boston/Lancaster, 1983)

    Google Scholar 

  • E. Husserl, Philosophie der Arithmetik. Husserliana Band 12, ed. by L. Eley (Martinus Nijhoff, Den Haag, 1970)

    Google Scholar 

  • E. Husserl, Formale and transzendentale Logik. Versuch einer Kritik der logischen Vernunft. Husserliana Band 17. ed. by Paul Janssen (Martinus Nijhoff, The Hague, 1974). English translation: Formal and Transcendental Logic, transl. by Dorion Cairns (Martinus Nijhoff, The Hague, 1969)

    Google Scholar 

  • E. Husserl, Logische Untersuchungen. Erster Teil. Prolegomena zur reinen Logik. Text der 1. und der 2. Auflage. Halle 1900, rev. ed. 1913. Husserliana Band 8. ed. by Elmar Holenstein (Martinus Nijhoff, The Hague, 1975). English translation: Logical Investigations. Prolegomena to pure logic, transl. by J.N. Findlay (Routledge, London/New York, [1970], 2001), pp. 1–161

    Google Scholar 

  • E. Husserl, Aufsätze und Rezensionen (1890–1910). Husserliana Band 22. ed. by Bernhard Rang (Martinus Nijhoff, The Hage/Boston/London, 1979)

    Google Scholar 

  • E. Husserl, Briefwechsel Band VII. Wissenschaftlerkorrespondenz, Kluwer, Dordrecht/Boston/London, 1994

    Book  Google Scholar 

  • D. Lohmar, Phänomenologie der Mathematik Kluwer, Dordrecht/Boston/London, 1989

    Book  Google Scholar 

  • D. Mahnke, From Hilbert to Husserl: First Introduction to Phenomenology, especially that of Formal Mathematics (1923). Studies in the History and Philosophy of Science 8, 71–84 (1977)

    Article  Google Scholar 

  • P. Mancosu, The Adventure of Reason. Interplay between Philosophy of Mathematics and Mathematical Logic 1900–1940 Oxford University Press, Oxford, 2010

    Book  Google Scholar 

  • M. Okada, Husserl and Hilbert on Completeness and Husserl’s Term Rewrite-based Theory of Multiplicity, in 24th international conference on rewriting techniques and applications (RTA’13), ed. by F. van Raamsdok (LIPIcs, Eindhoven, 2013), pp. 4–19

    Google Scholar 

  • V. Peckhaus, Hilbertprogramm und Kritische Philosophie. Das Göttinger Modell interdisziplinärer Zusammenarbeit zwischen Mathematik und Philosophie (Vandenhoeck & Ruprecht, Göttingen, 1990)

    Google Scholar 

  • D.E. Rowe, ‘Klein, Hilbert, and the Göttingen Mathematical Tradition’, Osiris, 2nd Series, vol V. Science in Germany: The Intersection of Institutional and Intellectual Issues, 186–213 (1989)

    Google Scholar 

  • W. Sieg, Hilbert’s Programs: 1917–1922. Bulletin of Symbolic Logic 5, 1–44 (1999)

    Article  Google Scholar 

  • W. Sieg, Beyond Hilbert’s Reach? in Logicism, Intuitionism, and Formalism, ed. by S. Lindström et al. (Eds), (Springer, 2009), pp. 449–483

    Google Scholar 

  • W. Sieg, Hilbert’s Programs and Beyond Oxford University Press, Oxford, 2013

    Google Scholar 

  • A. Steve, E.H. Reck, Completeness and Categoricity: 19th Century Axiomatics to 21st Century Semantics. Technical Report no. CMU-PHIL-118, Carnegie Mellon, Pittsburgh, Pennsylvania (2001). http://www.hss.cmu.edu/philosophy/techreports/118_Awodey.pdf. Accessed 9 Jan 2014

  • J. van Heijenoort, From Frege to Gödel. A Source Book in Mathematical Logic, 1979–1931 Harvard University Press, Cambridge, MA/London, 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirja Hartimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hartimo, M. (2017). Husserl and Hilbert. In: Centrone, S. (eds) Essays on Husserl's Logic and Philosophy of Mathematics. Synthese Library, vol 384. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1132-4_11

Download citation

Publish with us

Policies and ethics