Skip to main content

Identification of Taurine-Responsive Genes in Murine Liver Using the Cdo1-Null Mouse Model

  • Conference paper
Taurine 10

Abstract

The cysteine dioxygenase (Cdo1)-null mouse is unable to synthesize hypotaurine and taurine by the cysteine/cysteine sulfinate pathway and has very low taurine levels in all tissues. The lack of taurine is associated with a lack of taurine conjugation of bile acids, a dramatic increase in the total and unconjugated hepatic bile acid pools, and an increase in betaine and other molecules that serve as organic osmolytes. We used the Cdo1-mouse model to determine the effects of taurine deficiency on expression of proteins involved in sulfur amino acid and bile acid metabolism. We identified cysteine sulfinic acid decarboxylase (Csad), betaine:homocysteine methytransferase (Bhmt), cholesterol 7α-hydroxylase (Cyp7a1), and cytochrome P450 3A11 (Cyp3a11) as genes whose hepatic expression is strongly regulated in response to taurine depletion in the Cdo1-null mouse. Dietary taurine supplementation of Cdo1-null mice restored hepatic levels of these four proteins and their respective mRNAs to wild-type levels, whereas dietary taurine supplementation had no effect on abundance of these proteins or mRNAs in wild-type mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCB11:

ATP-binding cassette, subfamily B, member 11

BHMT:

Betaine:homocysteine methytransferase

CDO:

Cysteine dioxygenase

CSAD:

Cysteine sulfinic acid decarboxylase

CYP27A1:

Sterol 27-hydroxylase (cytochrome P450, family 27, subfamily A, member 1)

CYP3A11:

Cytochrome P450, family 3, subfamily A, member 11

CYP7A1:

Cholesterol 7α-hydroxylase (cytochrome P450, family 7, subfamily A, member 1)

FXR:

Farnesoid X receptor

LRH1:

Liver receptor homolog 1

OSTα-OSTβ:

Organic solute and steroid transporter

SHP:

Small heterodimer partner (also known as NR0B2)

SLC6A6:

Sodium- and chloride-dependent taurine transporter (also known as TAUT)

References

  • Alnouti Y, Csanaky IL, Klaassen CD (2008) Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 873:209–217

    Article  CAS  Google Scholar 

  • Bitoun M, Tappaz M (2000) Gene expression of taurine transporter and taurine biosynthetic enzymes in brain of rats with acute or chronic hyperosmotic plasma. A comparative study with gene expression of myo-inositol transporter, betaine transporter and sorbitol biosynthetic enzyme. Brain Res Mol Brain Res 77:10–18

    Article  CAS  PubMed  Google Scholar 

  • Bitoun M, Levillain O, Tappaz M (2001) Gene expression of the taurine transporter and taurine biosynthetic enzymes in rat kidney after antidiuresis and salt loading. Pflugers Arch 442:87–95

    Article  CAS  PubMed  Google Scholar 

  • Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RA, Miyake JH, Hui TY, Spann NJ (2002) Regulation of cholesterol-7α-hydroxylase: BAREly missing a SHP. J Lipid Res 43:533–543

    CAS  PubMed  Google Scholar 

  • De la Rosa J, Stipanuk MH (1985) The effect of taurine depletion with guanidinoethanesulfonate on bile acid metabolism in the rat. Life Sci 36:1347–1351

    Article  CAS  PubMed  Google Scholar 

  • Falany CN, Fortinberry H, Leiter EH, Barnes S (1997) Cloning, expression, and chromosomal localization of mouse liver bile acid CoA:amino acid N-acyltransferase. J Lipid Res 38:1139–1148

    CAS  PubMed  Google Scholar 

  • García-Cañaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardès C, Chaput E, Staempfli A, Blum D, Richter H, Benson GM (2013) Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr −/− mice versus hamsters. J Lipid Res 54:1283–1299

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann L, Brauers G, Gehrmann T, Häussinger D, Mayatepek E, Schliess F, Schwahn BC (2013) Osmotic regulation of hepatic betaine metabolism. Am J Physiol Gastrointest Liver Physiol 304:G835–G846

    Article  CAS  PubMed  Google Scholar 

  • Hrycay E, Forrest D, Liu L, Wang R, Tai J, Deo A, Ling V, Bandiera S (2014) Hepatic bile acid metabolism and expression of cytochrome P450 and related enzymes are altered in Bsep (−/−) mice. Mol Cell Biochem 389:119–132

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Bonde Y, Eggertsen G, Rudling M (2014) Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J Intern Med 275:27–38

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S, Takahashi K, Azuma J (2004) Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. Biochem J 382:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurkowska H, Niewiadomski J, Hirschberger LL, Roman HB, Mazor KM, Liu X, Locasale JW, Park E, Stipanuk MH (2016) Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino Acids 48:665–676

    Article  CAS  PubMed  Google Scholar 

  • Kerr TA, Matsumoto Y, Matsumoto H, Xie Y, Hirschberger LL, Stipanuk MH, Anakk S, Moore DD, Watanabe M, Kennedy S, Davidson NO (2013) Cysteine sulfinic acid decarboxylase regulation: a role for farnesoid X receptor and small heterodimer partner in murine hepatic taurine metabolism. Hepatol Res 44(10):E218–E228. doi:10.1111/hepr.12230

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuribayashi H, Miyata M, Yamakawa H, Yoshinari K, Yamazoe Y (2012) Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling. Eur J Pharmacol 697:132–138

    Article  CAS  PubMed  Google Scholar 

  • Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ (2013) Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4:2384. doi:10.1038/ncomms3384

    PubMed  Google Scholar 

  • Liu X, Ser Z, Locasale JW (2014) Development and quantitative evaluation of a high-resolution metabolomics technology. Anal Chem 86:2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894

    Article  CAS  PubMed  Google Scholar 

  • Miyata M, Tozawa A, Otsuka H, Nakamura T, Nagata K, Gonzalez FJ, Yamazoe Y (2005) Role of farnesoid X receptor in the enhancement of canalicular bile acid output and excretion of unconjugated bile acids: a mechanism for protection against cholic acid-induced liver toxicity. J Pharmacol Exp Ther 312:759–766

    Article  CAS  PubMed  Google Scholar 

  • Miyata M, Yamakawa H, Hayashi K, Kuribayashi H, Yamazoe Y, Yoshinari K (2013) Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids. Eur J Pharmacol 714:507–514

    Article  CAS  PubMed  Google Scholar 

  • Mong MC, Chao CY, Yin MC (2011) Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. Eur J Pharmacol 653:82–88

    Article  CAS  PubMed  Google Scholar 

  • Oh C, Choi YJ, Kim HG, Lee DH (2006) Osmosensitive gene expression of taurine transporter and cyclin C in embryonic fibroblast cells. Adv Exp Med Biol 583:49–57

    Article  CAS  PubMed  Google Scholar 

  • Rentschler LA, Hirschberger LL, Stipanuk MH (1986) Response of the kitten to dietary taurine depletion: effects on renal reabsorption, bile acid conjugation and activities of enzymes involved in taurine synthesis. Comp Biochem Physiol B 84:319–325

    Article  CAS  PubMed  Google Scholar 

  • Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roman HB, Hirschberger LL, Krijt J, Valli A, Kožich V, Stipanuk MH (2013) The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS production and evidence of pancreatic and lung toxicity. Antioxid Redox Signal 19:1321–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satsu H, Terasawa E, Hosokawa Y, Shimizu M (2003) Functional characterization and regulation of the taurine transporter and cysteine dioxygenase in human hepatoblastoma HepG2 cells. Biochem J 375:441–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235

    Article  CAS  PubMed  Google Scholar 

  • Schäfer C, Hoffmann L, Heldt K, Lornejad-Schäfer MR, Brauers G, Gehrmann T, Garrow TA, Häussinger D, Mayatepek E, Schwahn BC, Schliess F (2007) Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells. Am J Physiol Gastrointest Liver Physiol 292:G1089–G1098

    Article  PubMed  Google Scholar 

  • Schaffer S, Takahashi K, Azuma J (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    Article  CAS  PubMed  Google Scholar 

  • Stephan ZF, Armstrong MJ, Hayes KC (1981) Bile lipid alterations in taurine-depleted monkeys. Am J Clin Nutr 34:204–210

    CAS  PubMed  Google Scholar 

  • Stipanuk MH, Kuo SM, Hirschberger LL (1984) Changes in maternal taurine levels in response to pregnancy and lactation. Life Sci 35:1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH, Londono M, Lee JI, Hu M, Yu AF (2002) Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J Nutr 132:3369–3378

    CAS  PubMed  Google Scholar 

  • Takasaki M, Satsu H, Shimizu M (2004) Physiological significance of the taurine transporter and taurine biosynthetic enzymes in 3T3-L1 adipocytes. Biofactors 21:419–421

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya H, da Costa KA, Lee S, Renga B, Jaeschke H, Yang Z, Orena SJ, Goedken MJ, Zhang Y, Kong B, Lebofsky M, Rudraiah S, Smalling R, Guo G, Fiorucci S, Zeisel SH, Wang L (2015) Interactions between nuclear receptor SHP and FOXA1 maintain oscillatory homocysteine homeostasis in mice. Gastroenterology 148:1012–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301:E668–E684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y (2010) The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208:19–25

    Article  PubMed  Google Scholar 

  • Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, Fuchsbichler A, Halilbasic E, Denk H, Marschall HU, Trauner M (2006) Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290:G923–G932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by National Institutes of Health Grant R01 DK056649. HJ was supported by a “Mobility Plus” fellowship from the Ministry of Science and Higher Education (MNISW), Republic of Poland. The content is solely the responsibility of the authors. We thank Dr. Jason W. Locasale and Dr. Xiaojing Liu for running the metabolomics profile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha H. Stipanuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Stipanuk, M.H., Jurkowska, H., Niewiadomski, J., Mazor, K.M., Roman, H.B., Hirschberger, L.L. (2017). Identification of Taurine-Responsive Genes in Murine Liver Using the Cdo1-Null Mouse Model. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_38

Download citation

Publish with us

Policies and ethics