Skip to main content

Dissolved Inorganic Carbon (DIC)

  • Chapter
  • First Online:
Lake Kinneret

Part of the book series: Aquatic Ecology Series ((AQEC,volume 6))

Abstract

Various factors control the seasonal succession of the phytoplankton community in Lake Kinneret. One such factor is whether they are CO2 or HCO3 users. In spring, CO2-only users such as the dinoflagellate Peridinium gatunense often predominate and develop a bloom despite of extremely low levels of ambient aqueous CO2 and its rather poor carbon-concentrating mechanism. Based on seasonal dynamics of calcium and carbonate concentrations, mass balance considerations, and the relationships between planktonic δ13C and aqueous CO213C), we claim that massive precipitation of calcite which occurs concomitant with the bloom supplies the CO2(aq) needed for the algae to develop and maintain the bloom. Besides riverine inflows that supply most HCO3 , Ca2+, P, N, Se(IV), and perhaps also picoplankton (that seem to serve as nuclei for calcite crystal growth) in the spring, the prevalence of relatively high temperatures and low winds also supports the bloom. The low wind restricts gas exchange and facilitates the gradual accumulated deficiency in CO2(aq) in surface water leading to higher pH and a raise in Ωcalcite to an extent that induces massive calcite precipitation. By the end of this season, the capacity of the lake surface water to precipitate calcite is almost exhausted and bicarbonate users take over.

About one third of the autochthonous calcite precipitating from the epilimnion dissolves in the lower water mass (LWM), which is undersaturated with respect to this mineral. However, only 22.5 % of the seasonal accumulation of dissolved inorganic carbon (DIC; ~ 90 % HCO3 ) in the LWM originates from calcite dissolution while 77.5 % originates through direct biodegradation processes under initially oxic and eventually anoxic conditions (mediated mostly by bacterial SO4 reduction) and from the underlying bed sediments through methanogenesis. A potential sink of CO2 and perhaps also of isotopic fractionation in the LWM may be its uptake by anammox organisms during the sub-oxic stage (Chap. 20). The almost steady δ13C(DIC) of approximately between 8 and 9 ‰ in the LWM approached in the anoxic stage represents the relative contribution of each of these pools as well as of the primary DIC pool in this layer before stratification commences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berman-Frank I, Kaplan A (1998) Changes in inorganic carbon uptake during the progression of a dinoflagellate bloom in a lake ecosystem. Can J Bot 76:1043–1051

    CAS  Google Scholar 

  • Berman Frank I, Zohary T, Erez J, Dubinsky Z (1994) CO2 availability, carbonic anhydrase, and the annual dinoflagellate bloom in Lake Kinneret. Limnol Oceanogr 39(8):1822–1834

    Article  CAS  Google Scholar 

  • Dittrich M, Obst M (2004) Are picoplankton responsible for calcite precipitation in lakes Ambio 33: 559–564

    PubMed  Google Scholar 

  • Dittrich M, Kurz PH, Wehrli B (2004) The role of autotrophic pico-cyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiol J 21:45–53

    Article  CAS  Google Scholar 

  • Dubowski Y, Erez J, Stiller M (2003) Isotopic paleo-limnology of Lake Kinneret. Limnol Oceanogr 48(1):68–78

    Article  Google Scholar 

  • Eckert W, Conrad R (2007) Sulfide and methane evolution in the hypolimnion of a subtropical lake: a three-year study. Biogeochemistry 82:67–76

    Article  CAS  Google Scholar 

  • Erez J, Bouevitch A, Kaplan A (1998) Carbon isotope fractionation by photosynthetic aquatic microorganisms: experiments with Synechococcus PCC 7942 and simple carbon flux model. Can J Bot 76:1109–1118

    CAS  Google Scholar 

  • Gervais F, Riebesell U, Gorbunov MY (2002) Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47(5):1324–1335

    Article  CAS  Google Scholar 

  • Hadas O, Pinkas R (1995) Sulfate reduction processes in the hypolimnion and sediments of Lake Kinneret, Israel. Freshw Biol 33(1):63–72

    Article  CAS  Google Scholar 

  • Hadas O, Pinkas R, Dellphine E, Vardi A, Kaplan A, Sukenik A (1999) Limnological and ecophysiological aspects of Aphanizomenon ovalisporum bloom in Lake Kinneret, Israel. J Plankton Res 21(8):1439–1453

    Article  Google Scholar 

  • Hanagata NA, Malinsky-Rushansky N, Dubinsky Z (1999) Eukariotic picoplankton, Mychonastes homosphaera in Lake Kinneret, Israel. Phycol Res 47:263–269

    Article  Google Scholar 

  • Hertzig R, Dubinsky Z, Berman T (1981) Breakdown of Peridinium biomass in Lake Kinneret. In: Shuval H (ed) Developments in zone ecology and environmental quality. Balaban ISS, Philadelphia, pp 179–185

    Google Scholar 

  • Hollander DJ, Mckenzie JA (1991) CO2 control on carbon isotope fractionation during aqueous photosynthesis: a paleo pCO2 barometer. Geology 19:929–932

    Article  CAS  Google Scholar 

  • Katz A, Nishri A (2013) Calcium, magnesium and strontium cycling in stratified, hardwater lakes: Lake Kinneret (Sea of Galilee), Israel. Geochim Cosmochim Acta 105:372–394

    Article  CAS  Google Scholar 

  • Kaplan A, Ronen-Tarazi M, Tchernov D, Bonfil DJ, Zer H, Schatz D, Vardi A, Hassidim M, Reinhold L (1998) The inorganic carbon-concentrating mechanism of cyanobacteria: genes and ecological significance. In: Peschek GA, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic, New York, pp 561–571

    Google Scholar 

  • Kelts K, Hsui J (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, Heidelberg, pp 295–323

    Chapter  Google Scholar 

  • Kolodny Y, Katz A, Starinsky A, Moise T, Simon E (1999) Chemical tracing of salinity sources in Lake Kinneret (Sea of Galilee), Israel. Limnol Oceanogr 44:1035–1044

    Article  CAS  Google Scholar 

  • Koren N (1994) Rates of sedimentation in Lake Kinneret. MSc thesis, Haifa University, Israel (in Hebrew)

    Google Scholar 

  • Koren N, Ostrovsky I (2009) Sedimentation in a stratified subtropical lake. Verh Int Ver Limnol 27:2636–2639

    Google Scholar 

  • Lemckert C, Antenucci J, Saggio A, Imberger J (2004) Physical properties of turbulent benthic boundary layers generated by internal waves. J Hydraul Eng 130:58–69

    Article  Google Scholar 

  • Malinsky-Rushansky N, Berman T, Dubinsky Z (1995) Seasonal dynamics of picophytoplankton in Lake Kinneret, Israel. Freshw Biol 34:241–254

    Article  Google Scholar 

  • Mook WG, Bomerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and aqueous carbon dioxide. Earth Planet Sci Let 22:169–176

    Article  CAS  Google Scholar 

  • Müller B, Wang Y, Dittrich M, Wherli B (2003) Influence of organic carbon decomposition on calcite dissolution in surficial sediments of a freshwater lake. Water Res 37:4524–4532

    Article  PubMed  Google Scholar 

  • Müller B, Wang Y, Wehrli B (2006) Cycling of calcite in hard water lakes of different trophic states. Limnol Oceanogr 51:1678–1688

    Article  Google Scholar 

  • Nishri A, Imberger J, Eckert W, Ostrovsky I, Geifman Y (2000) The physical regime and the respective biogeochemical processes in the lower water mass of Lake Kinneret. Limnol Oceanogr 45:972–981

    Article  CAS  Google Scholar 

  • Nishri A, Koren N, Leibovici E (2005) Deposition of P in dust on Lake Kinneret. KLL-IOLR report T15/2005 (In Hebrew)

    Google Scholar 

  • Nishri A, Rimmer A, Wagner U, Rosentraub Z, Yeates P (2011) Physical controls on the spatial variability of the decomposition of organic matter in Lake Kinneret. Aquat Geochem 17(3):195–207

    Article  CAS  Google Scholar 

  • Pollingher U, Serruya C (1976) Phased division of Peridinium cinctum fa. westii and the development of the bloom in Lake Kinneret (Israel). J Phycol 12: 162–170

    Google Scholar 

  • Raidt H, Koschel R (1988) Morphology of calcite crystals in hardwater lakes. Limnologica 19:3–12

    CAS  Google Scholar 

  • Raven JA (1997) CO2 concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ 20(2):147–154

    Article  CAS  Google Scholar 

  • Raven JA, Cokell CS, De-La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc Lond B Biol Sci 365(1504):2641–2650. doi:10.1098/rstb.2008.0020

    Article  Google Scholar 

  • Rimmer A, Eckert W, Nishri A, Agnon Y (2006) Evaluating hypolimnetic diffusion parameters in thermally stratified lakes. Limnol Oceanogr 51:1906–1914

    Article  Google Scholar 

  • Serruya C (ed) (1978) Lake Kinneret, Monographiae Biologicae. Junk, The Hague

    Book  Google Scholar 

  • Stiller M (1977) Origin of sedimentation in Lake Kinneret traced by their isotopic composition. In: Golterman HL (ed) Interactions between sediments and freshwater. Junk, The Hague, pp 57–64

    Google Scholar 

  • Stiller M, Magaritz M (1974) Carbon-13 enriched carbonate in interstitial waters of Lake Kinneret sediments. Limnol Oceanogr 19(5):849–853

    Article  CAS  Google Scholar 

  • Stiller M, Nissenbaum A (1999) A stable isotope carbon study of dissolved inorganic carbon in hard water Lake Kinneret (Sea of Galilee). S Afr J Sci 95:166–170

    CAS  Google Scholar 

  • Sukenik A, Eshkol R, Livne A, Hadas O, Kaplan A, Tchernov D, Vardi A, Rom M (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

    Article  Google Scholar 

  • Tchernov D, Hassidim M, Luz B, Sukenik A, Reinhold L, Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganisms. Curr Biol 7(10):723–728

    Article  PubMed  CAS  Google Scholar 

  • Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A (1999) Programmed cell death of the bloom-forming dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr Biol 9:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Web-PHREEQC program (on line) Aqueous Geochemical modeling, Dept. Geosciences, North Dakota State University. http://www.ndsu.nodak.edu/webphreeq.

  • Wagner U, Nishri A, Sukenik A, Zohary T (2005) The ECORAFT in Lake Kinneret. SIL News: 46–47

    Google Scholar 

  • Wynne D, Panti NJ, Aaronson S, Berman T (1982) The relationship between nutrient status and chemical composition of Peridinium Cinctum during the bloom of Lake Kinneret. J Plankton Res 4:125–134

    Article  CAS  Google Scholar 

  • Yacobi YZ, Zohary T (2010) Carbon:chlorophyll a ratio, assimilation numbers and turnover times in Lake Kinneret phytoplankton. Hydrobiologia 639:185–196

    Article  CAS  Google Scholar 

  • Yakir, D. (2003) The Stable Isotopic Composition of Atmospheric CO2. Treatise on Geochemistry, Volume 4. Editor: Ralph F. Keeling. Executive Editors: Heinrich D. Holland and Karl K. Turekian. pp. 347. ISBN 0-08-043751-6. Elsevier, 2003., p.175–212

    Google Scholar 

  • Zohary T, Erez J, Gophen M, Berman-Frank I, Stiller M (1994) Seasonality of stable isotopes within the pelagic food web of Lake Kinneret. Limnol Oceanogr 39(5):1030–1043

    Article  CAS  Google Scholar 

  • Zohary T, Pollingher U, Hadas O, Hambright KD (1998) Bloom dynamics and sedimentation of Peridinium gatunense in Lake Kinneret. Limnol Oceanogr 43:175–186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami Nishri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nishri, A., Stiller, M. (2014). Dissolved Inorganic Carbon (DIC). In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8944-8_23

Download citation

Publish with us

Policies and ethics