Skip to main content

Application Examples of Performance-Based Specification and Quality Control

  • Chapter
  • First Online:
Performance-Based Specifications and Control of Concrete Durability

Abstract

This chapter presents an overview on several performance-based approaches for concrete durability specification and conformity assessment of the as-built structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torrent R, Ebensperger L. Studie über Methoden zur Messung und Beurteilung der Kennwerte des Überdeckungsbetons auf der Baustelle, Report No. 506, Bern: Office Fédéral des Routes, 1993 [in German].

    Google Scholar 

  2. Torrent R, Frenzer G. Methoden zur Messung und Beurteilung der Kennwerte des Ueberdeckungsbetons auf der Baustelle -Teil II, Report No. 516, Bern: Office Fédéral des Routes, 1995 [in German].

    Google Scholar 

  3. Brühwiler E, et al. Applicabilité de la mesure de perméabilité selon Torrent pour le contrôle de qualité du béton d’enrobage, Report No. 587, Bern: Office Fédéral des Routes, 2005 [in French].

    Google Scholar 

  4. Jacobs F. Luftpermeabilität als Kenngrösse für die Qualität des Überdeckungsbetons von Betonbauwerken, Report No. 604, Bern: Office Fédéral des Routes, 2006 [in German].

    Google Scholar 

  5. Jacobs F, Denariè E, Leemann A, Teruzzi T. Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen Report No. 641, Bern: Office Fédéral des Routes, 2009 [in German].

    Google Scholar 

  6. Torrent R. A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. RILEM Mater Struct. 1992;25(7):358–65.

    Article  Google Scholar 

  7. SIA, Construction en béton – Spécifications complémentaires, Annexe E: Perméabilité à l’air dans les Structures, Norme Suisse SIA 262/1, 2003 [in French].

    Google Scholar 

  8. SIA 262:2013, Betonbau, 2013 [in German and French].

    Google Scholar 

  9. SIA 262/1:2013, Betonbau - Ergänzende Festlegungen, 2013 [in German and French].

    Google Scholar 

  10. Torrent R. Non-destructive air-permeability measurement: from gas-flow modelling to improved testing. Amsterdam, 2012.

    Google Scholar 

  11. Jacobs F, Mühlan B. Neubau mit zu geringer Bewehrungsüberdeckung. die Baustellen, Issue Dezember 2012.

    Google Scholar 

  12. EN 12390-8:2009 Testing hardened concrete—Depth of penetration of water under pressure, 2009.

    Google Scholar 

  13. DIN 1048:1978 Prüfverfahren für Beton, 1978 [in German].

    Google Scholar 

  14. ASTM-C1202, Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Ann Book ASTM Stand. 2010; 4(2).

    Google Scholar 

  15. Torrent R, Denarié E, Jacobs F, Leemann A, Teruzzi T. Specification and site control of the permeability of the cover concrete: the Swiss approach. Mater Corros. 2012; 63(12):1127–1133.

    Google Scholar 

  16. Imamoto K, Tanaka A, Kanematsu M. Non-destructive assessment of concrete durability of the National Museum of Western Art in Japan. Amsterdam, 2012.

    Google Scholar 

  17. Imamoto K, Tanaka A. Evaluation of carbonation progress of existing concrete structure based on air permeability of concrete cover—a case study in Japan. South Africa: Cape Town; 2012.

    Google Scholar 

  18. Torrent R, Armaghani J, Taibi Y. Port of Miami Tunnel: carbonation and service life assessment through site permeability tests. Concr Int. 2013; 35(5).

    Google Scholar 

  19. Torrent R. Service life prediction: theorecrete. Kyoto: Labcrete and Realcrete Approaches; 2013.

    Google Scholar 

  20. Olek J, Lu A, Feng X, Magee B. Performance-related specifications for concrete bridge superstructures. West Lafayette: Joint Transportation Research Program; 2002.

    Book  Google Scholar 

  21. CEB-FIP Model Code 1990: 1991: Design Code, 1990.

    Google Scholar 

  22. Mackechnie J, Alexander M. Durability predictions using early age durability index testing. Australian Corrosion Association: Brisbane; 2002. 11 pp.

    Google Scholar 

  23. EN 1992-1-1:2011 Eurocode 2: design of concrete structures—Part 1-1: General rules and rules for buildings, 1992.

    Google Scholar 

  24. EN 206: Concrete: specification, performance, production and conformity, 2013.

    Google Scholar 

  25. Torent R, Fernandez Luco LF. Service life assessment of concrete structures based on site testing. São Paulo, Brazil: DBMC 2014 Conference; 1–5 Sept 2014.

    Google Scholar 

  26. EN 13670:2009 Execution of concrete structures, 2009.

    Google Scholar 

  27. Salvoldi B, Beushausen H, Alexander M. The correlation between oxygen permeability and the carbonation of concrete. Constr Build Mater. 2015;85(2015):30–7.

    Article  Google Scholar 

  28. Nilsson L-O, Luping T. Chapter 3—Relations between different transport parameters. In: Performance criteria for concrete durability, RILEM; 1995. pp 15–32.

    Google Scholar 

  29. Beushausen H, Alexander M. Application of durability indicators for quality control of concrete members—a practical example. France: Toulouse; 2009. p. 548–56.

    Google Scholar 

  30. Beushausen H, Knecht J, Alexander M, Schubert K. Performance-based durability control for precast concrete elements, Washington, 2010.

    Google Scholar 

  31. The concrete society technical report no. 31, Permeability testing of site concrete—a review of methods and experience, The Concrete Society, 2007.

    Google Scholar 

  32. Basheer PAM, Nolan E, Long AE. Near surface moisture gradients and in-situ permeation tests. Constr Build Mater. 2001;15(2–3):105–14.

    Article  Google Scholar 

  33. Basheer PAM, Nolan EA, McCarter WJ, Long AE. Effectiveness of in-situ moisture preconditioning methods for concrete. J Mater Civ Eng. ASCE, 2000; 12(2):131–138.

    Google Scholar 

  34. Autoclam permeability system, operating manual, Amphora NDT Limited, 2007.

    Google Scholar 

  35. British Standards Institution. Methods of testing concrete, Part 5. London, 40 pp., BS1881:Part 5: 1970.

    Google Scholar 

  36. ASTM C666-03. Standard test method for resistance of concrete to rapid freezing and thawing. ASTM Stand Int. 2008; 4(2).

    Google Scholar 

  37. Setzer MJ, Fegerlund G, Janssen DJ. CDF test—test method for the freeze-thaw resistance of concrete-tests with sodium chloride solution (CDF). Mater Struct. 1996;29:523–8.

    Article  Google Scholar 

  38. Basheer PAM. A brief review of methods for measuring the permeation properties of concrete in situ, 1993. pp 74–83.

    Google Scholar 

  39. Andrade C, Alonso C, Goñi S. Possibilities for electrical resistivity to universally characterise mass transport processes in concrete. London: E&FN Spon; 1993. pp 1639–1652.

    Google Scholar 

  40. Andrade C. Calculation of initiation and propagation periods of service-life of reinforcements by using the electrical resistivity. Evanston, RILEM Symposium, 22–24 Mar 2004.

    Google Scholar 

  41. Andrade C, d`Andréa R. Concrete mix design based on the electrical resistivity, Ancona, Italy, 2010.

    Google Scholar 

  42. Polder R, Andrade C, Elsener B, Vennesland O, Gulikers J, Weidert R, Raupach M. RILEM TC-154, Draft RILEM technical recommendation test methods for on site measurement of resistivity of concrete. Mater Struct. 2000;33(10):603–6.

    Article  Google Scholar 

  43. PrUNE 83988—1, Part 1: Direct method (reference method).

    Google Scholar 

  44. PrUNE 83988—2, Method of four points or Wenner method.

    Google Scholar 

  45. Feliu S, Andrade C, Gonzalez J, Alonso C. A new method for in situ measurement of electrical resistivity of reinforced concrete. Mater Struct. 1996;29:362–5.

    Article  Google Scholar 

  46. Garboczi EJ. Permeability, diffusivity and microstructural parameters: a critical review. Cem Concr Res. 1990;20:591–601.

    Article  Google Scholar 

  47. Andrade C, d’ Andrea R. The reaction factor in the resistivity mode, Delft, 2012.

    Google Scholar 

  48. Castellote M, Andrade C, Alonso C. Measurement of the steady and non steady state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests. Cem Concr Res. 2001;31:1411–20.

    Article  Google Scholar 

  49. Andrade C, Castellote M, d’Andrea R. Measurement of ageing effect of chloride diffusion coefficients in cementitious matrices. J Nucl Mater. 2011; 412:209–216.

    Google Scholar 

  50. Alonso C, Andrade C, González J. Relation between concrete resistivity and corrosion rate of the reinforcements in carbonated mortar made with several cement types. Cem Concr Res. 1988;118(5):687–98.

    Article  Google Scholar 

  51. ASTM-C642 Standard test method for density, absorption, and voids in hardened concrete. Ann Book ASTM Stand. 2010; 4(2).

    Google Scholar 

  52. Chini A, Muszynski L, Hicks J. Determination of acceptance permeability characteristics for performance-related specifications for portland cement concrete, 2003.

    Google Scholar 

  53. Kessler R, Powers RG, Vivas E, Paredes MA, Virmani YP. Surface resistivity as an indicator of concrete chloride penetration resistance, St. Louis, 2008.

    Google Scholar 

  54. Vivas E, Boyd A, Hamilton IH. Permeability of concrete—comparison of conductivity and diffusion methods, 2007.

    Google Scholar 

  55. AASHTO, Provisional AASHTO test method TP 95-11: standard test method for surface resistivity of concrete’s ability to resist chloride ion penetration, AASHTO Technology Implementation Group, 2011.

    Google Scholar 

  56. FDOT. Florida method of test for concrete resistivity as an electrical indicator of its permeability, 2004.

    Google Scholar 

  57. LADOTD, DOTD TR 233: test method for surface resistivity indication of concrete’s ability to resist chloride ion penetration, Baton Rouge, LADOTD, 2011.

    Google Scholar 

  58. Rupnow T, Icenogle E. Evaluation of surface resistivity measurements as an alternative to the rapid chloride permeability test for quality assurance and acceptance, 2011.

    Google Scholar 

  59. Polder R. The influence of blast furnace slag, fly ash silica fume on corrosion of reinforced concrete in marine environment. HERON. 1996;41(4):287–300.

    Google Scholar 

  60. Polder R. Chloride diffusion and resistivity testing of five concrete mixes for marine environment, St-Remy-les-Chevreuses, RILEM 2, 1997.

    Google Scholar 

  61. DuraCrete. Duracrete—probabilistic performance based durability design of concrete structures, CUR, Gouda, Gouda: The European Union—Brite EuRam III, CUR, 2000.

    Google Scholar 

  62. Polder R, Wegen G, Breugel K. Guideline for service life design of structural concrete—a performance based approach with regard to chloride induced corrosion, Leipzig, 2011. pp 25–34.

    Google Scholar 

  63. Wegen G, Polder R, Breugel K. Guideline for service life design of structural concrete—a performance based approach with regard to chloride induced Corrosion, HERON, Issue in preparation, 2013.

    Google Scholar 

  64. Rooij M, Polder R, Oosten H. Validation of durability of cast in situ concrete of the Groene Hart railway tunnel, HERON, 2007; 52(4):225–238.

    Google Scholar 

  65. CHLORTEST. Workshop resistance of concrete to chloride ingress—from laboratory test to in-field performance, 2005.

    Google Scholar 

  66. Hooton R, Thomas M, Stanish K. Testing the chloride penetration resistance of concrete: a literature review, prediction of chloride penetration in concrete. McLean: Federal Highway Administration; 2001.

    Google Scholar 

  67. Tang L. Concentration dependence of diffusion and migration of chloride ions: Part 1. Theoretical considerations. Cem Concr Res. 1999; 29(a):1463–1468.

    Google Scholar 

  68. Mackechnie J, Alexander M. Marine exposure of concrete under selected South African conditions, 1996.

    Google Scholar 

  69. Mackechnie J. Predictions of reinforced concrete durability in the marine environment, 2001.

    Google Scholar 

  70. Gehlen C. Probabilistische Lebensdauerbemessung von Stahlbetonbauwerken, Berlin, 2000.

    Google Scholar 

  71. fib, Model code for service life design, 2006.

    Google Scholar 

  72. Polder R, Rooij M. Durability of marine concrete structures—field investigations and modelling. HERON. 2005; 50(3):133–154.

    Google Scholar 

  73. Gaal G. Prediction of deterioration of concrete bridges. Delft: Delft University Press; 2004.

    Google Scholar 

  74. Breit W. Critical chloride content—investigations of steel in alkaline chloride solutions. Mater Corros. 1998;49(8):539–50.

    Article  Google Scholar 

  75. Breit W. Critical corrosion inducing chloride content—state of the art and new investigation results. Düsseldorf: Verlag Bau Technik; 2001.

    Google Scholar 

  76. Polder RB. Critical chloride content for reinforced concrete and its relationship to concrete resistivity. Mater Corros. 2009;60(8):623–30.

    Article  Google Scholar 

  77. Maage M, Helland S, Poulsen E, Vennesland O, Carlsen JE. Service life prediction of existing concrete structures exposed to marine environment. ACI Mater J. 1996;93(6):602–8.

    Google Scholar 

  78. Fluge F. Marine chlorides—a probabilistic approach to derive provisions for EN 206–1, Third DuraNet workshop on Service life design of concrete structures, from theory to standardisation, Tromsø, 2001.

    Google Scholar 

  79. CUR, Duurzaamheid van gewapend beton met betrekking tot chloride-geïnitieerde wapeningscorrosie, Gouda, 2009 [in Dutch].

    Google Scholar 

  80. Wegen G, Boutz M. Case studies CUR-Leidraad 1, Cement. 2012; 1:22–26, [in Dutch].

    Google Scholar 

  81. Guikers J. Development of guidelines for durability design of reinforced concrete structures. In: Bruegel K, Ye G, Yuan Y, editors. 2nd International symposium on service life design for infrastructure, Delft, 2010. pp 359–368.

    Google Scholar 

  82. Gulikers J. Practical implications of performance specifications for durability design of reinforced concrete structures. In: Dehn F, Beushausen H, editors. fib Workshop performance-based specifications for concrete, Leipzig, 2011.

    Google Scholar 

  83. Corporaal H, Eldik D. Dé DRCM-waarde bestaat niet. Cement. 2012;1:40–4 [in Dutch].

    Google Scholar 

  84. Rijkswaterstaat, Standpunt RWS DI ten aanzien van CUR Leidraad 1, 2011 [in Dutch].

    Google Scholar 

  85. Nanukuttan S, Basheer PAM, Basheer L, Holmes N, Srinivasan S, Tang L, McCarter WJ, Chrisp M, Starrs G. Quality control and performance assessment methods for concrete structures. Tampa, ACI Committees 201 (Durability of concrete) and 236 (Materials science of concrete), 2001.

    Google Scholar 

  86. Nanukuttan S, Basheer PAM, Holmes N, Tang L, McCarter WJ. Use of performance specification and predictive model for concretes exposed to a marine environment, Edinburgh, 2010.

    Google Scholar 

  87. McCarter WJ, Basheer PAM. Developing a performance-based testing methodology for specifying concrete durability, Engineering and physical sciences research council funded project (EP/G02152X/1) 2009–12., 2012.

    Google Scholar 

  88. Andrade C. Multilevel (four) methodology for durability design. Proceedings of the international RILEM workshop on performance-based evaluation and indicators for concrete durability, Madrid-Spain, 2006. pp 101–108.

    Google Scholar 

  89. UNE, P. 8.-1., Durability of concrete.

    Google Scholar 

  90. Baroghel-Bouny V. Concrete design for a given structure service life—durability management with regard to reinforcement corrosion and alkali-silica reaction. Paris: AFGC Scientific and Technical Documents (AFGC); 2007.

    Google Scholar 

  91. Baroghel-Bouny V. Durability indicators: relevant tools for performance-based evaluation and multi-level prediction of RC durability, Bagneux, RILEM, 2007. pp 3-30.4.

    Google Scholar 

  92. Baroghel-Bouny V. Durability indicators: relevant tools for an improved assessment of RC durability, Tours, 2007. pp 67–84.

    Google Scholar 

  93. Baroghel-Bouny V, Nguyen T, Dangla P. Assessment and prediction of RC structure service life by means of durability indicators and physical/chemical models. Cem Concr Compos. 2009;31(8):522–34.

    Article  Google Scholar 

  94. RILEM Report, 1st edn. Durability design of concrete structures. In: Sarja A, Vesicari E, editors. CRC Press, 1996.

    Google Scholar 

  95. Parrot J. Design for avoiding damage due to carbonation-induced corrosion. ACI Special Publication, 1994.

    Google Scholar 

  96. Santiago J, Basagoiti O, Macías J, Arenas J. La corrosion de las armaduras y la vida residual de las estruturas de hormigón, LNEC, 1998 [in Spanish].

    Google Scholar 

  97. Gonçalves A, Ribeiro B, Ferreira E. The new LNEC specifications on reinforced concrete durability, Guimarães, 2007.

    Google Scholar 

  98. Ribeiro S, Ribeiro A, Gonçalves A. Resistance of concrete to carbonation. Predicted and measured values in natural exposure, Haifa, ConcreteLife, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Beushausen, H. et al. (2016). Application Examples of Performance-Based Specification and Quality Control. In: Beushausen, H., Fernandez Luco, L. (eds) Performance-Based Specifications and Control of Concrete Durability. RILEM State-of-the-Art Reports, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7309-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7309-6_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7308-9

  • Online ISBN: 978-94-017-7309-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics