Skip to main content
Log in

Test methods for on site measurement of resistivity of concrete

  • RILEM Technical Committees
  • RILEM TC 154-EMC: Electrochemical Techniques for Measuring Metallic Corrosion
  • Published:
Materials and Structures Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alonso, M. C., Andrade, C. and Gonzalez, J. A., ‘Relation between resistivity and corrosion rate of reinforcement in carbonated mortar made with several cement types’,Cement and Concrete Research 8 (1988) 687–698.

    Article  Google Scholar 

  2. Andrade, C., Sanjuán, M. A., Recuero, A. and Río, O., ‘Calculation of chloride diffusivity in concrete from migration experiments in non steady-state conditions’,Cement and Concrete Research 24 (7) (1994) 1214–1228.

    Article  Google Scholar 

  3. Andrade, C., Alonso, M. C., Gonzalez, J. A. and Feliu, S., ‘Similarity between atmospheric/underground corrosion and reinforced concrete corrosion’, in ‘Corrosion of Reinforcement in Concrete’, C. L. Page, K. W. J. Treadaway, P. F. Bamforth, eds., Elsevier (1990) 39–48.

  4. Andrade, C., Sanjuan, M. A. and Alonso, M. C., ‘Measurement of chloride diffusion coefficient from migration tests’, paper 319, NACE Corrosion ’93 (1993)

  5. Arup, H., Sørensen, B., Frederiksen, J. and Thaulow, N., ‘The rapid chloride permeation test—an assessment’, paper 334, NACE Corrosion ’93 (1993)

  6. Bažant, Z., ‘Physical model for steel corrosion in concrete sea structures—Theory & application’,J. Structural Division. Am. Soc. Civ. Eng. 105 (ST6) (1979) 1137–1154 and 1155–1166.

    Google Scholar 

  7. Bertolini, L. and Polder, R. B., ‘Concrete resistivity and rein-forcement corrosion rate as a function of temperature and humidity of the environment’, TNO report 97-BT-R0574, March 1997, 85 pp.

  8. Bürchler, D., Elsener B. and Böhni, H., ‘Electrical resistivity and dielectric properties of hardened cement paste and mortar. Electrically based Microstructural Characterization’, ed. R.A. Gerhardt, S.R. Taylor and E.J. Garboczi, Mat. Res. Soc. Symp. Proc. Vol. 411 (1996) 407.

  9. CEN, ‘Cathodic protection of steel in concrete—Part 1: Atmospherically exposed concrete’, European Standard EN 12696-1, CEN/TC 219 (2000).

  10. COST 509, ‘Corrosion and protection of metals in contact with concrete’, Final report, Eds. R.N. Cox, R. Cigna, O. Vennesland, T. Valente, European Commission, Directorate General Science, Research and Development, Brussels, EUR 17608 EN, ISBN 92-828-0252-3, (1997) 148 pp.

  11. Elkey, W. and Sellevold, E. J., ‘Electrical resistivity of concrete’, Norwegian Public Roads Aministration Publication No. 80 (1995).

  12. Elsener, B. Electrochemical methods for evaluating reinforced concrete structures, SIA Documentation D020, Non-destructive test of reinforced concrete structures, Swiss Association for Engineers and Architects, Zürich (1988) p. 27–37 (only available in German).

    Google Scholar 

  13. Elsener, B., Flückiger, D., Wojtas, H. and Böhni, H., ‘Methods for the evaluation of corrosion of steel in concrete’, Swiss Federal Department of Traffic and Energy (EVED), ASB Research for the Maintenance of Bridges, VSS Report 521 (1996) 140 p (only available in German).

  14. Elsener, B., Klinghoffer, O., Frolund, T., Rislund, E., Schiegg, Y. and Böhni, H., ‘Assessment of Reinforcement Corrosion by Means of Galvanostatic Pulse Technique’, Proc. Int. Conf. Repair of Concrete Structures, Svolvær, Norway 28.–30. May 1997, ed. A. Blankvoll, Norwegian Public Roads Administration, 391–400.

  15. Elsener, B., ‘Corrosion Rate of Steel in Concrete—From Laboratory to Reinforced Concrete Structures’, in Corrosion of reinforcement in concrete—monitoring, prevention and rehabilitation’, Papers from Eurocorr’97, Mietz, J., Elsener, B., Polder, R., Eds. The European Federation of Corrosion Publication number 25, The Institute of Materials, London ISBN 1-86125-083-5, 1998, 92–103.

    Google Scholar 

  16. Elsener, B., ‘Corrosion of Steel in Concrete’, in “Corrosion and Environmental Degradation”, Vol. 2, Materials Science and Technology, John Wiley (2000).

  17. Ewins, A. J. ‘Resistivity measurements in concrete’,British Journal of NDT 32 (3) (1990) 120–126.

    Google Scholar 

  18. Feliu, S., Andrade, C., Gonzalez, J. A. and Alonso, C., ‘A new method for in situ measurement of electrical resistivity of rein-forced concrete’,Mater. Struct. 29 (1996) 362–365.

    Google Scholar 

  19. Fiore, S., Polder, R. B. and Cigna, R., ‘Evaluation of the concrete corrosivity by means of resistivity measurements’, Proc. Fourth Int. Symp. on Corrosion of Reinforcement in Concrete Construction, eds. C. L. Pago, P. B. Bamforth, J. W. Figg, Society of Chemical Industry, Cambridge, UK, 1–4 July 1996, 273–282.

    Google Scholar 

  20. Gjørv, O. E., Vennesland, Ø., El-Busaidy, A. H. S., ‘Electrical resistivity of concrete in the oceans’, 9th Annual Offshore Technology Conference, paper 2803, Houston (1977).

  21. Glass, G. K., Page, C. L. and Short, N. R., 1991, ‘Factors affecting the corrosion rate of steel in carbonated mortars’,Corrosion Science 32 (12) 1283–1294.

    Article  Google Scholar 

  22. Gowers, K. R. and Millard, S. G., ‘Measurement of concrete resistivity for assessment of corrosion severity of steel using Wenner technique’,ACI Materials Journal (1999) 536–541.

  23. Hunkeler, F., ‘The essentials for reinforced concrete monitoring, particular emphasis on CP onset and future responses’, Conference on Structural Improvement through Corrosion Protection of Reinforced Concrete, Institute of Corrosion, 2–3 June 1992, London.

  24. Hunkeler, F. and Holtzhauer, K., 1993, ‘Water content, porosity and electrical resistance of mortars and concrete’, Swiss Association for Engineers and Architects (1993) (only available in German).

  25. Millard, S., Ghassemi, M., Bungey, J. and Jafar, M., ‘Assessing the electrical resistivity of concrete structures for corrosion durability study’, in: Corrosion of Reinforcement in Concrete, eds. C. Page, K. Treadaway and P. Bamforth, Elsevier (1990) 303–313.

  26. Millard, S. G., ‘Reinforced concrete resistivity measurement techniques’, Proc. Institution Civil Engineers, part 2, March 1991, 71–88.

  27. Monfore, G. E., ‘The electrical resistivity of concrete’,Journal of the PCA Research and Development Laboratories (1968) 35–48.

  28. Naish, C. C., Harker, A. and Carney, R. F. A. ‘Concrete inspection: Interpretation of potential and resistivity measurement’, in “Corrosion of Reinforcement in Concrete’, eds. C. L. Page, K. W. J. Treadaway, P. F. Bamforth (1990) 314–332.

  29. Polder, R. B., Ketelaars, M., ‘Electrical resistance of blast furnace slag cement and ordinary Portland cement concretes’, in Proc. of the Int. Conf. on Blended Cements in Construction, Sheffield, 1991, ed. R.N. Swamy, Elsevier, 401–415.

  30. Polder, R. B. and Nuiten, P. C., ‘Design and installation of a multi-element cathodic protection system’, Proceedings RILEM International Conference on Rehabilitation of Concrete Structures, eds. D. W. S. Ho & F. Collins, Melbourne (1992) 257–266.

  31. Polder, R. B., Hondel, A. J. van den, ‘Electrochemical realkalisation and chloride removal of concrete; state-of-the-art, laboratory and field experience’, Proc. RILEM International Conference Rehabilitation of Concrete Structures, Melbourne eds. D. Ho & F. Collins (1992) 135–148.

  32. Polder, R. B., Valente, M., Cigna, R. and Valente, T., ‘Laboratory investigations of concrete resistivity and corrosion rate of reinforcement in atmospheric conditions’, Proceedings RILEM International Conference Rehabilitation of Concrete Structures, Melbourne, eds. D. Ho & F. Collins (1992) 475–486.

  33. Polder, R. B., Bamforth, P. B., Basheer, M., Chapman-Andrews, J., Cigna, R., Jafar, M. I., Mazzoni, A., Nolan, E. and Wojtas, H., ‘Reinforcement Corrosion and Concrete Resistivity-state-of-the-art, laboratory and field results’, Proc. Int. Conf. on Corrosion and Corrosion Protection of Steel in Concrete, ed. R. N. Swamy, Sheffield Academic Press, 1994, 571–580.

  34. Polder, R. B. and Nuiten, P. C., A multi-element approach for cathodic protection of reinforced concrete,Materials Performance 33 (6) (1994) 11–14.

    Google Scholar 

  35. Polder, R. B., ‘Chloride diffusion and resistivity testing of five concrete mixes for marine environment’, Proc. RILEM. International Workshop on Chloride Penetration into Concrete, St-Remy-les-Chevreuses, October 15–18, 1995, Eds. L.-O. Nilsson, J.-P. Ollivier, RILEM, 1997.

  36. Polder, R. B., ‘Cathodic Protection of Reinforced Concrete Structures in The Netherlands—Experience and Developments’, in ‘Corrosion of reinforcement in concrete—monitoring, prevention and rehabilitation’, Papers from Eurocorr’97, Mietz, J., Elsener, B., Polder, R., Eds. The European Federation of Corrosion Publication number 25, The Institute of Materials, London, SBN 1-86125-083-5, 1998, 172–184.

    Google Scholar 

  37. Raupach, M., ‘Chloride-induced macroelement corrosion of steel in reinforced concrete’, German Committee for Reinforced Concrete, 433, Beuth Editions, Berlin-Cologne, (1992) (only available in German).

  38. Schiessl, P. ed., ‘Corrosion of steel in concrete’, report of RILEM Technical Committee 60-CSC, Chapman and Hall, London (1988).

    Google Scholar 

  39. Schiessl, P. and Raupach, M., ‘Influence of concrete composition and micro-climate on the critical chloride content in concrete’, in “Corrosion of Reinforcement in Concrete”, eds., C. L. Page, K. W. J. Treadaway, P. F. Bamforth, Elsevier (1990) 49.

  40. Stratfull, R. F.,Materials Protection 29 (1968).

  41. Tritthart, J. and Gevmayer, H., ‘Changes of electrical resistance in drying concrete’,Zement und Beton (Cement and concrete) 1 (1) (1985) 23–28 (only available in German).

    Google Scholar 

  42. Tuutti, K., ‘Corrosion of steel in concrete’, CBI Stockholm, 1982.

    Google Scholar 

  43. Valente, M., Polder, R. B., Cigna, R. and Valente, T., ‘Experimental investigation of concrete resistivity and corrosion rate of reinforcement in atmospheric conditions’, TNO report BI-91-173 (1991).

  44. Wenner, F., ‘A method for measuring earth resistivity’,Bulletin of the Bureau of Standards 12 (1915) 469–478

    Google Scholar 

  45. Weidert, R. and Gehlen, C., ‘Electrolytic resistivity of cover conrete: Relevance, measurement and interpretation’, Eighth Conf. on Durability of Materials and Components (1999).

Download references

Authors

Additional information

The text presented hereafter is a draft for general consideration. Comments should be sent to the TC Chairlady: Dr Carmen Andrade, Instituto de Ciencias de la Construccion “Eduardo Torroja”, Serrano Galvache s/n—Aptdo 19.002, 28033 Madrid, Spain; e-mail: andrade@ietcc.csic.es, by 30 June 2001.

TC MEMBERSHIP: Chairlady: C. Andrade, Spain;Secretary: B. Elsener, Switzerland;Members: C. Alonso, Spain; R. Cigna, Italy; J. Galland, France; J. Gulikers, The Netherlands; U. Nürnberger, Germany; R. Polder, The Netherlands; V. Pollet, Belgium; M. Salta, Portugal; Ø. Vennesland, Norway; R. Weidert, Germany;Corresponding members: C. Page, UK; C. Stevenson, South Africa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polder, R., Andrade, C., Elsener, B. et al. Test methods for on site measurement of resistivity of concrete. Mat. Struct. 33, 603–611 (2000). https://doi.org/10.1007/BF02480599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480599

Keywords

Navigation