Skip to main content

Abstract

Tobacco is readily amenable to genetic engineering and has many desirable agronomic attributes, like high biomass yield and high soluble protein levels that are essential for crops used to produce recombinant proteins. It is a non-food crop, making containment in an agricultural setting feasible. Most production systems are based on the accumulation of proteins in leaves, eliminating the need for flowering and pollen production. These attributes make tobacco an ideal bioreactor for the large-scale production of biopharmaceutical recombinant proteins. As a consequence, a wide variety of the recombinant proteins, from simple peptides to complicated multimeric molecules like hemoglobin or secretory antibodies, have been produced successfully in tobacco. Many of these proteins have therapeutic or industrial uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker H, Bardor M, Molthoff JW Gomord V, Elbers I, Stevens LH, Wjordi W, Lommen A, Faye L, Lerouge P and Bosch D, 2001. Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA, 98: 2899–2904

    Article  PubMed  CAS  Google Scholar 

  • Barrangcr JA, Tomich J, Weiler S, Sakallah S, Sansieri C, Mifflin T, Bahnson A, Wei FS, Wei JF and Vallor M, 1995. Molecular biology of glucocerebrosidase and the treatment of Gaucher disease. Cytokines Mol Tiler, 1: 149–63

    Google Scholar 

  • Belanger H, Fleysh N, Cox S, Bartman G, Deka D, Trudel M, Koprowski H and Yusibov V, 2000. Human respiratory syncytial virus vaccine antigen produced in plants. FASEB J, 14: 2323–2328

    Article  PubMed  CAS  Google Scholar 

  • Bogorad L, 2000. Engineering chloroplaste: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol, 18: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y and Raskin I, 1999. Production of recombinant proteins in plant root exudates. Nat Biotechnol, 17: 466–469

    Article  PubMed  CAS  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine ND, Ma JK, Lerouge P and Faye L, 1999. N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology, 9: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Chargelgue D, Vine ND, van Dolleweerd CJ, Drake PM and Ma JK, 2000. A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res, 9: 187–194

    Article  Google Scholar 

  • Cramer CL, Weissenborn DL, Oishi KK, Grabau EA, Bennett S, Ponce E, Grabowski GA and Radin DN, 1996. Bioproduction of human enzymes in transgenic tobacco. Ann N Y Acad Sci, 792: 62–71

    Article  PubMed  CAS  Google Scholar 

  • Dawson WO, Lewandowski DJ, Hilf ME, Bubrick P, Raffo AJ, Shaw JJ, Grantham GL and Desjardins PR, 1989. A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology, 173: 285–292

    Article  Google Scholar 

  • De Aizpura HJ, Wilson YM and Harrison LC, 1992. Glutamic acid decarboxylase autoantibodies in preclinical insulin-dependent diabetes. Proc Natl Acad Sci USA, 89: 9841–9845

    Article  Google Scholar 

  • de Boer A and Weisbeek PJ, 1991. Chloroplast protein topogenesis: import, sorting and assembly. Biochim Biophys Acta 1071: 221–253

    Article  Google Scholar 

  • Dieryck W, Pagnier J, Poyart C, Marden MC, Gruber V, Bournat P, Baudino S and Merot B, 1997. Human haemoglobin from transgenic tobacco. Nature, 386: 29–30

    Article  PubMed  CAS  Google Scholar 

  • Dobberstein B, Blobel G and Chua NH, 1977. In vitro synthesis and processing of a putative precursor for the small subunit ofribulose-1,5-bisphosphate carboxylase ofChlamydomonas reinhardtii. Proc Natl Acad Sci USA, 74: 1082–1085

    Article  PubMed  CAS  Google Scholar 

  • Ebskamp MJ, van der Meer IM, Spronk BA, Weisbeek PJ and Smeekens SC, 1994. Accumulation of fructose polymers in transgenic tobacco. Biotechnology (N Y), 12: 272–275

    Article  CAS  Google Scholar 

  • Edelbaum O, Stein D, Holland N, Gafni Y, Livneh O, Novick D, Rubinstein M, and Sela I, 1992. Expression of active human interferon-beta in transgenic plants. J Interferon Res, 12: 449–453

    Article  PubMed  CAS  Google Scholar 

  • ErshoffBH, Wildman SG and Kwanyuen P, 1978. Biological evolution of fraction I protein from tobacco. Proc Soc Exp Med Biol, 157: 66–630

    Google Scholar 

  • Fiedler U, and Conrad U, 1995. High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds, Biotechnology (N Y), 13: 1090–1093

    Article  CAS  Google Scholar 

  • Fiedler U, Phillips J, Artsaenko O and Conrad U, 1997. Optimization of scFv antibody production in transgenic plants. Immunotechnology, 3: 205–216

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Schumann D, Zimmermann S, Drossard J, Sack M and Schillberg S, 1999. Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur J Biochem, 262: 810–816

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Vine ND, Pedrazzini E, Hein MB, Wang F, Ma JK and Vitale A, 2000. Assembly, secretion, and vacuolar delivery of a hybrid immunoglobulin in plants. Plant Physiol, 123: 1483–1494

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Vitale A, Lord JM, Ceriotti A and Roberts LM, 1998, Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem, 273: 14194–14199

    Article  PubMed  CAS  Google Scholar 

  • Funatsu G and Funatsu M, 1977. Separation of the two constituent polypeptide chains of ricin D [toxic protein of the castorbean]. Agric Biol Chem, 41: 1211–1215

    Article  CAS  Google Scholar 

  • Ganz PR, Dudani AK, Tackaberry ES, Sardana R, Sauder C, Cheng XY and Altosaar I, 1996. Expression of human blood proteins in transgenic plants: the cytokine GM-CSF as a model protein. In: Transgenic plants: a production system for industrial and pharmaceutical proteins. Eds. Owen MRL and Pen J, John Wiley and Sons, New York, pp. 281–297

    Google Scholar 

  • Garber K, 2001. Biotech industry faces new bottleneck. Nat Biotechnol, 19: 184–185

    Article  PubMed  CAS  Google Scholar 

  • Giannasca PJ, Giannasca KT, Falk P, Gordon JI and Neutra MR, 1994. Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am J Physiol, 267: G1108–121

    PubMed  CAS  Google Scholar 

  • Giddings G, Allison G, Brokks D and Carter A, 2001. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol, 18: 1151–1155

    Article  CAS  Google Scholar 

  • Glaser E, Sjoling S, Tanudji M and Whelan J, 1998. Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol Biol, 38: 311–338

    Google Scholar 

  • Goodspeed TH, 1954. The Genus Nicotiana. Chronica Botanica Company, Waltham, Mass. USA

    Google Scholar 

  • Grayburn WS, Collins GB and Hildebrand DF, 1992. Fatty acid alteration by a delta 9 desaturase in transgenic tobacco tissue. Biotechnology (N Y), 10: 675–678

    Article  CAS  Google Scholar 

  • Guda C, Lee SB and Daniell H, 1999. Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep, 19: 257–262

    Article  Google Scholar 

  • Hamamoto H, Sugiyama Y, Nakagawa N, Hashida E, Matsunaga Y, Takemoto S, Watanabe Y, and Okada Y, 1993. A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Biotechnology (N Y), 11: 930–932

    Article  CAS  Google Scholar 

  • Haq TA, Mason HS, Clements JD, and Arntzen CJ, 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 268: 714–716

    Article  PubMed  CAS  Google Scholar 

  • Herbers K, Wilke I and Sonnewald U, 1995. A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Biotechnology, 13: 63–66

    Article  CAS  Google Scholar 

  • Hiatt A, Cafferkey R and Bowdish K, 1989. Production of antibodies in transgenic plants. Nature, 342: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Higo, K, Saito Y, and Higo H, 1993. Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Biosci Biotechnol Biochem, 57: 1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers SG, and Fraley RT, 1985. A simple and general method of transferring genes into plants. Science, 227: 1229–1231

    Article  CAS  Google Scholar 

  • Huang Z, Dry I, Webster D, Strugnell R and Wesselingh S, 2001. Plant-derived measles virus hemagglutinin protein induces neutralizing antibodies in mice. Vaccine, 19: 2163–2171

    Article  PubMed  CAS  Google Scholar 

  • James EA, Wang C, Wang Z, Reeves R, Shin JH, Magnuson NS and Lee JM, 2000. Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells. Protein Expr Purif, 19: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Judah JD, Gamble M and Steadman JH, 1973. Biosynthesis of serum albumin in rat liver, evidence for the existence of `proalbumin’. Biochem J, 134: 1083–1091

    PubMed  CAS  Google Scholar 

  • Kehm R, Jakob NJ, Wetzel TM, Tobiasch E, Viczian O, Jock S, Geider K, Suie S, and Darai G, 2001. Expression of immunogenic Puumala virus nucleocapsid protein in transgenic tobacco and potato plants. Virus Genes, 22: 73–83

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Kawazu T, Sun JL, Karita S, Sakka K, and Ohmiya K, 1997. Expression of bacterial cellulase and xylanase genes in plant cell. Rec Res Develop Agric Biol Chem, 1: 249–258

    CAS  Google Scholar 

  • Knuckles BE, Kohler GO, and deFremery D, 1979. Processing of fresh tobacco leaves for protein fractions. J Agric Food Chem, 27: 414–418

    Article  CAS  Google Scholar 

  • Komarnytsky S, Borisjuk NV, Borisjuk LG, Alam MZ and Raskin I, 2000. Production of recombinant proteins in tobacco guttation fluid. Plant Physiol, 124: 927–934

    Article  PubMed  CAS  Google Scholar 

  • Koo M, Bendahmane M, Lettieri GA, Paoletti AD, Lane TE, Fitchen JH, Buchmeier MJ and Beachy RN, 1999. Protective immunity against murine hepatitis virus ( MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proc Natl Acad Sci USA, 96: 7774–7779

    Google Scholar 

  • Krebitz M, Wiedermann U, Essl D, Steinkellner H, Wagner B, Turpen TH, Ebner C, Scheiner O, and Breiteneder H, 2000. Rapid production of the major birch pollen allergen Bet v 1 in Nicotiana benthamiana plants and its immunological in vitro and in vivo characterization. FASEB J, 14: 1279–288

    Article  PubMed  CAS  Google Scholar 

  • Kumagai MH, Donson J, della-Cioppa G and Grill LK, 2000. Rapid, high-level expression of glycosylated rice alpha-amylase in transfected plants by an RNA viral vector. Gene, 245: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Kumagai MH, Turpen TH, Weinzettl N, della-Cioppa G, Turpen AM, Donson J, Hilf ME, Grantham GL, Dawson WO and Chow TP, 1993. Rapid, high-level expression of biologically active alpha-trichosanthin in transfected plants by an RNA viral vector. Proc Natl Acad Sci USA, 90: 427–430

    Article  PubMed  CAS  Google Scholar 

  • Kwon SY, Yang Y, Hong CB and Pyun KH, 1995. Expression of active human interleukin-6 in transgenic tobacco. Mol Cells, 5: 486–492

    CAS  Google Scholar 

  • Lamb FI, Roberts LM and Lord JM, 1985. Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem, 148: 265–270

    Article  PubMed  CAS  Google Scholar 

  • Leite A, Kemper EL, da Silva MJ, Luchessi AD, Siloto RMP, Bonaccorsi ED, El-Dorry HF and Arruda P, 2000. Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants. Mol Breed, 6: 47–53

    Article  CAS  Google Scholar 

  • Longstaff M, Newell CA, Boonstra B, Strachan G, Learmonth D, Harris WJ, Porter AJ and Hamilton WD, 1998. Expression and characterisation of single-chain antibody fragments produced in transgenic plants against the organic herbicides atrazine and paraquat. Biochim Biophys Acta, 1381: 147–160

    Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K and Lehner T, 1995. Generation and assembly of secretory antibodies in plants. Science, 268: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB and Lehner T, 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med, 4: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Lehner T, Stabila P, Fux CI and Hiatt A, 1994. Assembly of monoclonal antibodies with IgG I and IgA heavy chain domains in transgenic tobacco plants. Eur J Immunol, 24: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Ma SW, Zhao DL, Yin ZQ, Mukherjee R, Singh B, Qin HY, Stiller CR and Jevnikar AM, 1997. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nat Med, 3: 793–796

    Article  PubMed  CAS  Google Scholar 

  • Magnuson NS, Linzmaier PM, Reeves R, An G, HayGlass K and Lee JM, 1998. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif, 13: 45–52

    Article  PubMed  CAS  Google Scholar 

  • Mal iga P, Sz-Breznovits A and Marton L, 1973. Streptomycin resistant plants from callus culture of haploid tobacco. Nat New Biol, 244: 29–30

    PubMed  CAS  Google Scholar 

  • Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK and Arntzen CJ, 1996. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA, 93: 5335–5340

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Ikura K, Ueda M and Sasaki K, 1995. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol Biol, 27: 1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Mayer L, 2000. Mucosal immunity and gastrointestinal antigen processing. J Pediatr Gastroenterol Nutr 30 Suppl: S4–12

    Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tuse D, Levy S and Levy R, 1999. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc Natl Acad Sci USA, 96: 703–708

    Article  PubMed  CAS  Google Scholar 

  • Meager A, 1998. The molecular biology of cytokines. Molecular Medical Science Series. Eds. James K and Morris A, John Wiley & Sons, London

    Google Scholar 

  • Menassa R, Jevnikar A and Brandie J, 2001. A contained system for the field production of plant recombinant proteins. In Molecular Farming. Eds. Toutant JP and Balazs E, INRA Editions, Versailles, France, pp 197–205

    Google Scholar 

  • Miele L, 1997. Plant bioreactors as hosts for biopharmaceuticals: Regulatory considerations. TIBTECH, 15: 45–50

    Article  CAS  Google Scholar 

  • Montanari L., Fantozzi P and Pedone S, 1993. Tobacco fraction I (F1P) utilization for oral and enteral feeding of patients. 1. Heavy metal evaluation. Food Sci Tech 26: 259–263.

    Google Scholar 

  • Pelham HR, 1989. Control of protein exit from the endoplasmic reticulum. Ann Rev Cell Biol, 5: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Pen J, Molendijk L, Quax WJ, Sijmons PC, van Ooyen AJ, van den Elzen PJ, Rietveld K and Hoekema A, 1992. Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Biotechnology (N Y), 10: 292–296

    Article  CAS  Google Scholar 

  • Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, van den Elzen PJM, Geerse K, van der Klis JD, Versteegh HAJ, van Ooyen AJJ, Hoekema A, Van Paridon PA, Van den Elzen PJM, Van der Klis JD and Van Ooyen AJJ, 1993. Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio\Technology, 11: 811–814

    Article  CAS  Google Scholar 

  • Porceddu A, Falorni A, Ferradini N, Cosentino A, Calcinaro F, Faleri C, Cresti M, Lorenzetti F, Brunetti P and Pezzotti M, 1999. Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus. Mol Breed, 5: 553–560

    Article  CAS  Google Scholar 

  • Richter LJ, Thanavala Y, Arntzen CJ and Mason HS, 2000. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol, 18: 1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero F, Exposito JY, Bournat P, Gruber V, Perret S, Comte J, Olagnier B, Garrone R and Theisen M, 2000. Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett, 469: 132–136

    Article  PubMed  CAS  Google Scholar 

  • Salmon V, Legrand D, Slomianny MC, el Yazidi I, Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M and Merot B, 1998. Production of human lactoferrin in transgenic tobacco plants. Protein Expr Purif, 13: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Roosien J, de Boer JM, Wilmink A, Rosso MN, Bosch D, Stiekema WJ, Gommers FJ, Bakker J and Schots A. 1997. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett, 415: 235–241

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Roosien J, van Engelen FA, de Jong GA, Borst-Vrenssen AW, Zilverentant JF, Bosch D, Stiekema WJ, Gommers FJ, Schots A and Bakker J, 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol, 30: 781–793

    Article  PubMed  CAS  Google Scholar 

  • Sehnke PC and Ferl RJ, 1999. Processing ofpreproricin in transgenic tobacco. Protein Expr Purif, 15: 188–195

    Article  PubMed  CAS  Google Scholar 

  • Sehnke PC, Pedrosa L, Paul AL, Frankel AE and Ferl RJ, 1994. Expression of active, processed ricin in transgenic tobacco. J Biol Chem, 269: 22473–22476

    PubMed  CAS  Google Scholar 

  • Shuzeski JM, Nichols LM, Gesteland RF and Atkins F, 1991. The signal for a leaky AUG codon in several plant viruses includes the two downstream codons. J Mol Biol, 218: 365–373

    Article  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM and Nehra NS, 1999. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J, 19: 209–216

    CAS  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ and Hoekema A,. 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology, 8: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Smirnov SP, Teverovskaia EKH, Krasheninnikova LV and Pukhal’ski VA, 1990. Design of an expression integrative vector and its application for introducing the human recombinant alfa interferon gene into plants. Genetika, 26: 2111–2121

    PubMed  CAS  Google Scholar 

  • Smolenska L, Roberts IM, Learmonth D, Porter AJ, Harris WJ, Wilson TM and Santa Cruz S, 1998. Production of a functional single chain antibody attached to the surface of a plant virus. FEBS Lett, 441: 379–382

    Article  PubMed  CAS  Google Scholar 

  • Staczek J, Bendahmane M, Gilleland LB, Beachy RN and Gilleland HE, 2000. Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa. Vaccine, 18: 2266–2274

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, ParadkarV, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G and Russell DA, 2000. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol, 18: 333–338

    CAS  Google Scholar 

  • Stevens LH, Stoopen GM, Elbers IJ, MolthoffJW, Bakker HA, Lommen A, Bosch D and Jordi W, 2000. Effect of climate conditions and plant developmental stage on the stability of antibodies expressed in transgenic tobacco. Plant Physiol, 124: 173–182

    CAS  Google Scholar 

  • Sugiyama Y, Hamamoto H, Takemoto S, Watanabe Y and Okada Y, 1995. Systemic production of foreign peptides on the particle surface of tobacco mosaic virus. FEBS Lett, 359: 247–250

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P and Maliga P, 1990. Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA, 87: 8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Tackaberry ES, Dudani AK, Prior F, Tocchi M, Sardana R, Altosaar I and Ganz PR, 1999. Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine, 17: 3020–3029

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu N, Ishikawa N, Meshi T and Okada Y, 1987. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J, 6: 307

    PubMed  CAS  Google Scholar 

  • Takase K and Hagiwara K, 1998. Expression of human alpha-lactalbumin in transgenic tobacco. J Biochem (Tokyo), 123: 440–44

    Article  CAS  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM and Hartley M, 1994. Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J, 5: 827–835

    Article  PubMed  CAS  Google Scholar 

  • Theisen M, 1999. Production of recombinant blood factors in transgenic plants. Adv Exp Med Biol, 464: 211–220

    Article  PubMed  CAS  Google Scholar 

  • Tuboly T, Yu W, Bailey A, Degrandis S, Du S, Erickson L and Nagy E, 2000. Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine, 18: 2023–2028

    Article  PubMed  CAS  Google Scholar 

  • Turpen TH, Rein] SJ, Charoenvit Y, Hoffman SL, Fallarme V and Grill LK, 1995. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology (N Y), 13: 53–57

    Article  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T and Austin-Phillips S, 1999. Charcterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem Biophys Res Comm, 264: 201–206

    Article  PubMed  CAS  Google Scholar 

  • van Ree R, Cabanes-Macheteau M, Akkerdaas J, Milazzo J-P, Loutelier-Bourhis C, Rayon C, Villalba M, Koppelman S, Aalberse R, Rodriguez R, Faye L and Lerouge P, 2000. 3(1,4)xylose and a(1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem, 275: 11451–11458

    Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S and Fischer R, 1999. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA, 96: 11128–11133

    Article  PubMed  CAS  Google Scholar 

  • Verch T, Yusibov V and Koprowski H, 1998. Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. J Immunol Methods, 220: 69–75

    Article  PubMed  CAS  Google Scholar 

  • Verwoerd TC, van Paridon PA, van Ooyen AJ, van Lent JW, Hoekema A and Pen J, 1995. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol, 109: 1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Waegemann K and Soll J, 1991. Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant J, 1: 149–158

    Article  Google Scholar 

  • Walsh G, 2000. Biopharmaceutical benchmarks. Nat Biotechnol, 18: 831–833

    Article  PubMed  CAS  Google Scholar 

  • Wilcox CP, Weissinger AK, Long RC, Fitzmaurice LC, Mirkov TE and Swaisgood HE, 1997. Production and purification of an active bovine lysozyme in tobacco (Nicotiana tabacum): Utilization of value-added crop plants traditionally grown under intensive agriculture. J Agric Food Chem, 45: 2793–797

    Google Scholar 

  • Woodleif WG, Chaplin JF, Campbell CR and DeJong DW, 1981. Effect of variety and harvest treatments on protein yield of close-grown tobacco. Tob Sci, 25: 83–86

    Google Scholar 

  • Yusibov VA, Modelska K, Steplewski M, Agadjanyan D, Weiner D, Hooper DC and Koprowski H, 1997. Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-l. Proc Natl Acad Sci USA, 94: 5784–5788

    Article  PubMed  CAS  Google Scholar 

  • Yusibov VA, Shivprasad S, Tureen RH, Dawson W and Koprowski H, 1999. Plant viral vectors based on tobamoviruses. Curr Top Microbiol Immunol, 240: 81–94

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rymerson, R.T., Menassa, R., Brandle, J.E. (2002). Tobacco, a Platform for the Production of Recombinant Proteins. In: Erickson, L., Yu, WJ., Brandle, J., Rymerson, R. (eds) Molecular Farming of Plants and Animals for Human and Veterinary Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2317-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2317-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6110-2

  • Online ISBN: 978-94-017-2317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics