Skip to main content

Antenna Complexes from Green Photosynthetic Bacteria

  • Chapter
Light-Harvesting Antennas in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 13))

Summary

Green photosynthetic bacteria contain unique peripheral antenna complexes known as chiorosomes. Chiorosome complexes are optimized for light collection at low levels. The chlorosome is composed of large amounts of pigment and relatively little protein. The pigments consist principally of bacteriochiorophylls c, d or e plus carotenoids, along with small amounts of bacteriochlorophyll a. The bacteriochlorophylls c, d or e are organized into pigment oligomers with relatively little or no involvement of protein in determining the pigment arrangement. The bacteriochlorophyll a is associated with a protein as a pigment-protein complex. Additional membrane-associated antenna complexes are energy transfer intermediates between the chlorosome and the reaction center. These include the Fenna-Matthews-Olson protein in the green sulfur bacteria, and integral membrane antenna complexes similar to the purple bacterial LHI complex in the green nonsulfur bacteria. The green sulfur bacteria antenna system is regulated by redox potential, so that excitations are efficiently quenched at high redox potentials and never reach the reaction center. This regulation is mediated by quinone molecules that are localized in the chiorosome complex and is thought to protect the cell from light-induced superoxide formation under conditions of transient oxygen exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BChl:

bacteriochlorophyll

Chl:

chlorophyll

E m :

redox midpoint potential

FMO:

Fenna-Matthews-Olson

Fox :

fluorescence intensity under oxidized conditions

Fred :

fluorescence intensity under reduced conditions

LH:

light harvesting

MK:

menaquinone

References

  • Arellano JB, Melø TB, Borrego CM, Garcia-Gil J and Naqvi KR (2000a) Nanosecond laser photolysis studies of chiorosomes and artificial aggregates containing bacteriochlorophyl I e: Evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chiorobium phaeo Bacieroides strain CL14O1. Photochem Photobiol 72: 669–675

    Article  PubMed  CAS  Google Scholar 

  • Arellano JB, Pseneik J, Borrego CM, Ma YZ, Guyoneaud R, Garcia-Gil J and Gilibro T (2000b) Effect of carotenoid biosynthesis inhibition on the chlorosome organization in Chlorobium phaeobacteroides strain CLI 401. Photochem Photobiol 71: 715–723

    Article  PubMed  CAS  Google Scholar 

  • Balaban TS, Holzwarth AR, Sehaffner K, Boender GJ, Degroot HJM (1995) CP-MAS C-l3-nnir dipolar correlation spectroscopy of C-13-enriched chlorosomes and isolated bacteriochlorophyll-c aggregates of Chlorobium tepidum-the selforganization of pigments is the main structural feature of ehlorosomes. Biochemistry 34: 15259–15266

    Article  PubMed  CAS  Google Scholar 

  • Barkigia KM, Melamed D, Sweet RM, Smith KM and Fajer J (1997) Self-assembled zinc pheoporphyrin dimers. Models for the supramolecular antenna complexes of green photosynthetic bacteria? Spectrochimiea Acta A 53: 463–469

    Article  Google Scholar 

  • Betti JA, Blankenship RE, Natarajan LV, Dickinson LC and Fuller RC (1982) Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 680: 194–201

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Wang J, Causgrove TP and Brune DC (1990) Efficiency and kinetics of energy transfer in chiorosome antennas from green photosynthetic bacteria. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 17–24. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Blankenship RE, Cheng PL, Causgrove TP, Brune DC, Wang SHH, Choh JU and Wang J (1993) Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol 57: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Olson JM and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 399–435. KiuwerAcademic Publishers, Dordrecht

    Google Scholar 

  • Babe FW, Pfennig N, Swanson KL and Smith KM (1990) Red shift of absorption maxima in chlorobiineae through enzymic methylation oftheir antenna bacteriochlorophylls. Biochemistry 29: 4340–4348

    Article  Google Scholar 

  • Boomer SM, Pierson BK, Austinhirst R and Castenholz RW (2000) Characterization of novel bacteriochlorophyll-acontaining red filaments from alkaline hot springs in Yellowstone National Park. Arch Microbial 174: 152–161 SEP

    Google Scholar 

  • Brune DC, Nozawa T and Blankenship RE (1987) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm-absorbing bacteriochlorophyll c in Chlorofle.xus aurantiacus chlorosomes. Biochemistry 26: 8644–8652

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1994) Gene nomenclature recommendations for green photosynthetic bacteria and heliobacteria. Photosynth Rcs4l: 27–28

    Google Scholar 

  • Buchanan BB and Arnon DI (1990) A reverse Krebs cycle in photosynthesis-Consensus at last. Photosynth Res 24: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N. (1992) Photosynthetic reaction center genes in green sulfur bacteria and in Photosystern I are related. Proc NatI Acad Sci USA 89: 8135–8139

    Article  Google Scholar 

  • Bystrova ML, Mal’gosheva IN and Krasnovskii AA (1979) Study Robert E. Blankenship and Katsumi Matsuura of molecular mechanism of self-assembly of aggregated forms of BChI c. Mol Biol (English Trans) 13: 582–594

    Google Scholar 

  • Carbonera D, Bordignon E, Giacometti G, Agostini G, Vianelli A and Vannini C (2001) Fluorescence and absorption detected magnetic resonance of chiorosomes from green bacteria Chiorobium tepidum and Chioroflexus aurantiacus. A comparative study. J Phys Chem. B 105: 246–255

    Google Scholar 

  • Causgrove TP, Brune DC, Wang J, Wittmershaus BP and Blankenship RE (1990) Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria. Photosynth Res 26: 39–48

    CAS  Google Scholar 

  • Chiefari J, Griebenow K, Balaban TS, Holzwarth AR and SchaffnerK (1995) Models for the pigment organization in the chlorosomes of photosynthetic bacteria-Diastereoselective control of in-vitro Bacteriochlorophyll-C(S) aggregation. J Phys Chem99: 16194–16194

    Google Scholar 

  • Chung Sand Bryant DA (1996) Characterization of csmB genes, encoding a 7.5-kDa protein of the chiorosome envelope, from the green sulfur bacteria Chiorobium vibrioforme 8327D and Chiorobium tepiduni. Arch Microbiol 166: 234–244

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Frank G, Zuber H and Bryant DA (1994) Genes encoding two chlorosome components from the green sulfur bacteria Chiorobium vibrioforme strain 83271D and Chiorobium tepidum. Photosynth Res 41: 26 1–275

    Google Scholar 

  • Chung SH, Shen GZ, OrmerodJ and Bryant DA (1998) Insertional inactivation studies of the csmA and csrnC genes of the green sulfur bacterium Chiorobium vibrioforme 8327: The Chlorosome protein csmA is required for viability but csmC is dispensable. FEMS Lett 164: 353–361

    Google Scholar 

  • Cogdell Ri, lsaacs NW, Howard TD, McLuskey K, Fraser NJ and Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181: 3869–3879

    PubMed  CAS  Google Scholar 

  • Chung SH, Shen GZ, OrmerodJ and Bryant DA (1998) Insertional inactivation studies of the csmA and csrnC genes of the green sulfur bacterium Chiorobium vibrioforme 8327: The Chlorosome protein csmA is required for viability but csmC is dispensable. FEMS Lett 164: 353–361

    Google Scholar 

  • Cox RP, Miller M, Aschenbrucker J, Ma Y-Z and Gillbro T (1998) The role of bacteriochlorophyll e and carotenoids in light harvesting in brown-colored green sulfur bacteria. In: Garab G (ed) Photosynthesis: Mechanism and Effects, Vol I, pp 149–152, Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Daurat-Larroque ST, Brew K and Fenna RE (1986) The complete amino acid sequence of a bacteriochlorophyll a-protein from Proslhecochlorjs aestuarii. J Biol Chem 261: 3607–3615

    PubMed  CAS  Google Scholar 

  • Dracheva S, Williams JC and Blankenship RE (1992) Cloning and sequencing of the FMO-protein gene from Chlorobiun tepidurn. In: MurataN (ed) Research in Photosynthesis, pp 53–56. Kluwer Academic Publishers, Dordrceht

    Google Scholar 

  • Feick RG and Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23: 3693–3700

    Article  CAS  Google Scholar 

  • Feick R, Shiozawa JA and Ertlmaier A (1995) Biochemical and spectroscopic properties of the reaction center of the green filamentous bacterium Chlorofiexus aurantiacus. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 699 708. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Feller U and Hauska G (1995) The reaction center from green sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 665–685. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chiorobiurn limicola. Nature 258: 573–577

    Article  CAS  Google Scholar 

  • FctisovaZG, Kharchenko and Abdourakhmanov IA (1986) Strong orientational ordering of the near-infrared transition moment vectors of light-harvesting antenna bacterioviridin in chromatophores of the green photosynthetic bacterium Chiorobium limicola. FEBS Lett 199: 234–236

    Article  Google Scholar 

  • Fetisova ZG, Freiberg AM and Timpmann KE (1988) Long- range molecular order as an efficient strategy for light harvesting in photosynthesis. Nature 334: 633–634

    Article  CAS  Google Scholar 

  • Franke C and Amesz J (1997) Isolation and pigment composition of the antenna system of four species of green sulfur bacteria. Photosynth Res 52: 137–146

    Article  Google Scholar 

  • Franke C, Otte SCM, Miller M, Amesz J and Olson JM (1996) Energy transfer from carotenoid and FMO protein in subcellular preparations from green sulfur bacteria. Spectroscopic characterization of an FMO-reaction center core complex at low temperature. Photosynth Res 50: 71–77

    Google Scholar 

  • Franken EM, Neerken S, Louwe RJW, Amesz J and Aartsma TJ (1998) A permanent hole burning study of the FMO antenna complex of the green sulfur bacterium Prosthecochioris aestuarii. Biochemistry 37: 5046–5051

    Article  PubMed  CAS  Google Scholar 

  • Freiberg A, Lin S, Timpmann K and Blankenship RE (1997) Exciton dynamics in FMO bacteriochlorophyll protein at low temperatures. J Phys Chem B 101: 7211–7220

    Article  PubMed  CAS  Google Scholar 

  • Frigaard NU and Matsuura K (1999) Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chiorobium tepidum. Biochim Biophys Acta 1412: 108–117

    Article  PubMed  CAS  Google Scholar 

  • Frigaard NU, Takaichi S, Hirota M, Shimada K and Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates Arch Microbiol 167: 343–349

    CAS  Google Scholar 

  • Frigaard NU, Matsuura K, Hirota M, Miller M and Cox RP (1998) Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria. Photosynth Res 58: 81–90

    Article  CAS  Google Scholar 

  • Frigaard N, Tokita Sand Matsuura K (1999) Exogenous quinones inhibit photosynthetic electron transfer in Chioroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. Biochim Biophys Acts 1413: 108–16

    Article  CAS  Google Scholar 

  • Frydman B and Rappaport H (1963) Non-chlorophyllous pigments of Chiorobium thiosulfatophilum-chlorobiumquinone. JAm Chem Soc 85: 823–825

    Article  CAS  Google Scholar 

  • Gerola PD and Olson JM (1986) A new bacteriochlorophyll alpha-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E and Woese CR (1985) The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobiuni and Chioroflexus. Syst AppI Microbial 6: 152–156

    Article  CAS  Google Scholar 

  • Griebenow K and Flolzwarth AR (1989) Pigment organization and energy transfer in green bacteria. 1. Isolation of native chlorosomes free of bound bacteriochlorophyll a from Chloroflexus auranhiacus by gel-elcctrophoretic filtration. Biochim Biophys Acts 973: 235–240

    Article  CAS  Google Scholar 

  • Griebenow K, Holzwarth AR, Van Mourik F and van Grondelle R (1991) Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein- containing and protein-free chlorosornes isolated from Chioroflexus auranhiacus Strain Ok-70-fl. Biochim Biophys Acta 1058: 194–202

    Article  CAS  Google Scholar 

  • Griesbeck C, Hager-Braun C, Rogl 11 and Hauska G (1998) Quantitation of P840 reaction center preparations from Chiorobium tepidum: Chiorophylls and FMO protein. Biochim Biophys Acta 1365: 285–293

    Google Scholar 

  • GOlen D (1996) Interpretation ofthe excited-state structure of the Fenna-Matthews-Olson pigment protein complex of Prosthecochioris aestuarli based on the simultaneous simulation of the 4 K absorption, linear dichroism, and singlet-triplet absorption difference spectra: A possible excitonic explanation? I Phys Chem 100: 17683–17689

    Article  Google Scholar 

  • Hanada S, Takaichi S, Matsuura K and Nakamura K (2002) Rose(flexus castenhoizU gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium which lacks chiorosomes. mi Syst Evol Microbiol 52: 187–193

    CAS  Google Scholar 

  • Hirota M, Moriyama T, Shimada K, Miller M, Olson JM and Matsuura K (1992a) High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous solution. Biochim Biophys Acta 1099: 27 1–274

    Google Scholar 

  • Hirota M, Tsuji K, Shimada K and Matsuura K (1992b) Composition and organization of chiorosome-like bacteriochlorophyll c-lipid aggregates in aqueous solution. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 81–84, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Holo H, Broch-Due, M. and Ormerod JO (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143: 94–99

    Article  CAS  Google Scholar 

  • Holzwarth AR and Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth Res4l: 225–233

    Google Scholar 

  • Holzwarth AR, Griebenow K and Schaffner K. (l990a) A photosynthetic antenna system which contains a protein-free chromophore aggregate. Z Naturforsch 45c: 203–206

    Google Scholar 

  • Holzwarth AR, Muller MG and Griebenow K(1 990b) Picosecond energy transfer kinetics between pigment pools in different preparations of chlorosomes from the green bacterium Chioroflexus aurantiacus. J Photochem Photobiol B 5: 457–465

    Google Scholar 

  • Hu D (2001) Investigation of the Fenna-Matthews-Olson protein from photosynthetic green sulfur bacteria. Ph.D. Dissertation, Arizona State University, Tempe

    Google Scholar 

  • ImhoffiM and Bias-lmhoff U (1995) Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 179–205. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Iseri El and Gulen D (1999) Electronic excited states and excitation transfer kinetics in the Fenna-Matthews-Olson protein of the photosynthetic bacterium Prosihecochioris aestuarii at low temperatures. European Biophys J with Biophys Let 28: 243–253

    Article  CAS  Google Scholar 

  • Ishii T, Kimura M, Yamamoto T, Kirihata M and Uehara K (2000) The effects of epirnerization at the 31-position of bacteriochlorophylls c on their aggregation in chlorosomes of green sulfur bacteria. Control of the ratio of 3(1) epimers by light intensity. Photochem Photobiol 71: 567–573

    Article  PubMed  CAS  Google Scholar 

  • Johnson SG and Small GJ (1991) Excited state structure and energy transfer dynamics of the bacteriochlorophyll a protein from Prosthecochloris aestuarji. J Phys Chem 95: 471–479

    Article  CAS  Google Scholar 

  • Karapetyan NV, Swarthoff T, Rijgcrsbcrg CP and Amesz I (1980) Fluorescence emission spectra of cells and subcellular preparations of a green photosynthetic bacterium. Effects of dithionite on the intensity of the emission bands. Biochim Biophys Acta 593: 254–260

    Google Scholar 

  • Krasnovsky AA and Bystrova Ml (1980) Self-assembly of chlorophyll aggregated structures. BioSystems 12: 181–194

    Article  PubMed  CAS  Google Scholar 

  • Krasnovsky AA and Pakshina EV (1959) The photochemical and spectral properties of bacterioviridin of green sulfur bacteria. Doklady Acad Nauk SSSR (English Trans) 127: 215–2 18

    Google Scholar 

  • Larsen KL, Miller M, Cox RP (1995) Incorporation ofexogenons long-chain alcohols into bacteriochlorophyll-c homologs by Chiorofiexus aurantiacus. Arch Microbiol 163: 119–123

    Article  CAS  Google Scholar 

  • Lehmann RP, Brunishola RA and Zuber H (l994a) Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChI c-binding function of the 5.7 kDa polypeptide. FEBS Lett 342: 319–324

    Google Scholar 

  • Lehmann RP, Brunisholz RA and ZuberH (1 994b) Giant circular dichroism of chlorosomes from Chiorofiexus aurantiacus treated with 1-hexanol and proteolytic enzymes. Photosynth Res4l: 165–173

    Google Scholar 

  • Li YF, Zhou W, Blankenship RE and Allen J (1997) Crystal structure ofthe bacteriochlorophyll a protein from Chiorobiurn tepidum. I Molec Bio 271: 456–471

    Article  CAS  Google Scholar 

  • Lin S, Van Amerongen H and Struve WS (1991) Ultrafast pump- probe spectroscopy of bacteriochlorophyll c antennae in bacteriochlorophyll a-containing chlorosomes from the green photosynthetic bacterium Chioroflexus aurantiacus. Biochim Biophys Acta 1060: 13 24

    Google Scholar 

  • Lopez I, Ryan S and Blankenship RE (1996) Sequence of the bchG Gene from Chiorojiexus aurantiacus: The relationship between chlorophyll synthase and otherpolyprenyltransferases. Bacteriol 178: 3369–3373

    Google Scholar 

  • Louwe RJW, Vrieze J, Aartsma Ti and Hoff Al (l997a) Toward an integral interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochioris aestuarii. I. An investigation with linear-dichroic absorbance-detected magnetic resonance. J Phys Chem B 101: 11273–11279

    Google Scholar 

  • Louwe RJW, Vrieze I, Hoff Al and Aartsma TJ (1 997b) Toward an integral interpretation of the optical steady-state spectra of the FMO-cornplex of Prosthecochioris aestuarii. 2. Exciton simulations. J Phys Chem B 101: 11280–11287

    Google Scholar 

  • Louwe RJW, Aartsma Ti, Gast P, Hulsebosch RI, Nan HM, Vrieze J and Hoff Al (1998) The triplet state of the FMO complex of the green sulfur bacterium Prosthecochloris oesluarii studied with single-crystal EPR. Biochim Biophys Acta-Biocnergetics 1365: 373–384

    Article  CAS  Google Scholar 

  • Lu XY and Pearlstein RM (1993) Simulations ofProsthecochloris bacteriochlorophyll a-protein optical-spectra improved by parametric computer-search. Photochem Photobiol 57: 86–91

    Article  CAS  Google Scholar 

  • Matsuura K and Olson JM (1990) Reversible conversion of aggregated bacteriochlorophyll-c to the monomeric form by 1 Hexanol in chlorosomes from Chlorobium and Chloroflexus. Biochim Biophys Acta 1019: 233–238

    Article  CAS  Google Scholar 

  • Matsuura K, Hirota M, Shimada K and Mimuro M (1993) Spectral forms and orientation of bactcriochlorophyll-c and bacteriochlorophyll-a in chlorosomes of the green photosynthetic bacterium Chioroflexus aurantiacus. Photochem Photobiol 57: 92–97

    Article  CAS  Google Scholar 

  • Matsuzaki S, Zazubovich V, Rätsep M Hayes JM and Small Gi (2000) Energy transfer kinetics and low energy vibrational structure of the three lowest energy Q states of the Fenna Matthews-Olson antenna complex. J Phys Chem B 104: 9564–9572

    Article  CAS  Google Scholar 

  • Matthews BW and Fenna RE (1980) Structure of a green bacteriochiorophyll protein. Ace Chem Res 13: 309–317

    Article  CAS  Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC, Schmid MF, Olson JM (1979) Structure of a bacteriochlorophyll 0-protein from the green photosynthetic bacterium Prosthecochloris-aestuaril. J Mol Biol 131: 259–285

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov AN, Olson JM, Li Y-F, Allen JP and Blankenship RE (1998) Orientation and excitonic interactions of the FennaMatthews-Olson protein in membranes of the green sulfur bacterium Chiorobium lepidum. Photosynth Res 56: 315–328

    Article  CAS  Google Scholar 

  • Melø TB, Frigaard NU, Matsuura K and Razi Naqvi K (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim Acta A 56A: 200 1–2010

    Google Scholar 

  • MillerM, Gillbro T and Olson JM (1993) Aqueous aggregates of bacteriochlorophyll c as a model for pigment organization in chlorosomes. Photochem Photobiol 57: 98–102

    Article  Google Scholar 

  • Mimuro M, Hirota M, Nishimura Y, Moriyama T, Yamazaki I, Shimada K and Matsuura K. (1994) Molecular organization of bacteriochlorophyll in chiorosomes ofthe green photosynthetic bacterium Chioroflexus aurantiacus: Studies of fluorescence depolarization accompanied by energy transfer processes. Photosynthesis Res 41: 181–191

    Google Scholar 

  • Mizoguchi T, Sakamoto S, Koyama Y, Ogura K and Inagaki F (1998) The structure of the aggregate form of bacteriochlorophyll c showing the Q absorption above 740 nm as determined by the ring current effects on 1H and ‘3C nuclei and by ‘H-1H intermolecular NOE correlations. Photochem Photobiol 67: 239–248

    Article  CAS  Google Scholar 

  • Mizoguchi T, Hara K, Nagae H and Koyama Y (2000) Structural transformation among the aggregate forms of bacteriochlorophyll c as determined by electron absorption and NMR spectroscopies: Dependence on the stereoisomeric configuration and on the bulkiness of the 8-C side chain. Photochem Photobiol 71: 596–609

    PubMed  CAS  Google Scholar 

  • Montaño G, Wu H-M, Lin S, Brune DC and Blankenship RE (200la) Isolation and characterization of the B795 baseplate light-harvesting complex from the chlorosomes of C’hloroflexus aurantiacus. Biophys J 80: 30a

    Google Scholar 

  • Montaño U, Bowen B, Woodbury NW, Labelle J, Pizziconi V and Blankenship RE, ( 2001 b) Determination of the number of bacteriochlorophyll molecules per chlorosorne light-harvesting complex in Chlorofiexus aurantiacus and Chlorobiunt tepidunt. In: PS200 I: Proceedings of the 12th International Congress on Photosynthesis. S 15–020. CSIRO Publishing, Melbourne (CDROM)

    Google Scholar 

  • Neerken S, Permentier Hi, Francke C, Aartsma Ti and Amcsz I (1998) Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochioris aesluarti. Biochemistry 37: 10792–10797

    Article  PubMed  CAS  Google Scholar 

  • Nicdermcier B, Scheer H and Feick RU (1992) ‘Ihe functional role of protein in the organization of bacteriochlorophyll-c in chlorosomcs of Chloroflexus auranliacus. Eur I Biochem 204: 685–692

    Google Scholar 

  • Niedermcier G, Shiozawa IA, Lottspeich F and Feick RU (1994) Primary structure of two chlorosorne proteins from Chlorofiexus auranhiacus. FEBS Lett 342: 6 1–65

    Google Scholar 

  • Novoderezhkin VI and Fetisova ZG (1997) Oligomerization of light-harvesting pigments as a structural factor optimizing the photosynthetic antenna function. 3. Model of oligomeric pigment organization in antennae of green bacteria. Mol Biol 31: 435–440

    CAS  Google Scholar 

  • Nozawa T, Ohtomo K, Suzuki M, Nakagawa H, Shikama Y, Konami H, and Wang ZY (1994) Structures of chlorosomes and aggregated BChl c in Chlorobiurn tepidurn from solid state high resolution CP/MAS C-13 NMR. Photosynth Res 41: 211 223

    Google Scholar 

  • Oba T and Tamiaki H (1999) Why do chlorosomal chiorophylls lack the C13(2)-methoxycarbonyl moiety? An in vitro model study. Photosynth Res 61: 23–31

    Article  CAS  Google Scholar 

  • Oelze J and Golecki iR (1995) Membranes and chiorosomes of green bacteria: Structure, composition and development. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 259–278. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Oh-oka H, Kamei S, Matsubara H, Lin S, van Noort PL and Blankenship RE (1998) Transient Absorption Spectroscopy of Energy Transfer and Trapping Processes in the Reaction Center of Chlorobium tepidurn. J Phys Chem 102: 8190–8195

    CAS  Google Scholar 

  • Olson JM (1966) Chlorophyll-protein complexes derived from green photosynthetic bacteria. In: Vernon LP and Seely GR (eds) The Chlorophylls pp 413–425 Academic Press, New York

    Google Scholar 

  • Olson iM (1978) Bacteriochlorophyll a-proteins from green bacteria. In: Clayton RK and Sistrom RS (eds) The Photosynthetic Bacteria, pp 161–178. Plenum Press, New York

    Google Scholar 

  • Olson JM (l980a) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594: 33–51

    Google Scholar 

  • Olson iM (1 980b) Bacteriochiorophyll a-proteins of two green photosynthetic bacteria. Meth Enzymol 69: 336–344

    Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67: 61 75

    Google Scholar 

  • Ormerod JG (1992) Physiology of the photosynthetic prokaryotes. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 93–120. Plenum, New York

    Chapter  Google Scholar 

  • Owen GM and Hoff AJ (2001) Absorbance detected magnetic resonance spectra of the FMO complex of Prosthecochloris aestuarii reconsidered: Exciton simulations. J Phys Chem B 105: 1458–1463

    Article  CAS  Google Scholar 

  • Pearlstein RM (1992) Theory of the optical spectra of the bacteriochlorophyll-a antenna protein trimer from Frosticcochioris aestuarii. Photosynth Res 31: 2 13–226

    Google Scholar 

  • Pearisteirt RM and Hemenger RP (1978) Bacteriochlorophyll electronic-transition moment directions in bacteriochlorophyll a-protein. Proc Nati Acad Sci USA 75: 4920–4924

    Article  Google Scholar 

  • Permentier HP, Schmidt KA, Kobayashi M, Akiyama M, HagerBraun C, Neerken, S, Miller M and Amcsz 1. (2000) Composition and optical properties of reaction core complexes from the green sulfur bacteria Frost hecochioris aestuarii and Chiorobiuni tepidum. Photosynth Res 64: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Philipson KU and Sauer K (1972) Taxciton interaction in a bacteriochlorophyll-protein from Ch1oropseudonionas ethylica. Absorption and circular dichroism at 77 K. Biochem 11: 1880–1885

    Article  CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1992) The family Chioroflexaceae. In: Balows A, Truper HG, Dworkin M, Schliefer KH, and Harder W (eds) The Prokaryotes, pp 3754–3774. Springer-Verlag, Berlin

    Google Scholar 

  • Pierson BK and CastenholzRW (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 3 1–47. Kiuwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pierson BK, Giovannoni SJ, Stahl DA and Castenholz RW (1985) Heliothrix oregonensis, gen-nov, sp-nov, a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142: 164–167

    Google Scholar 

  • Porra, RJ (1997) Recent progress in pophyrin and chlorophyll biosynthesis. Photochem Photobiol 65: 492–516

    Article  CAS  Google Scholar 

  • Powis R and Redfearn ER (1969) Quinones of the chiorobacteriaceae-properties and possible function. Biochim Biophys Acta 172: 429–437

    Article  Google Scholar 

  • Powls R, Redfeam F and Trippett S (1968) The structure of chlorobiumquinone. Biochem Biophys Res Commun 33: 408–411

    Article  PubMed  CAS  Google Scholar 

  • Rätsep M, Blankenship RE and Small GJ (1999) Energy transfer and spectral dynamics ofthe three lowest energy Q(y)-states of the Fenna-Matthews-Olson antenna complex. J Phys Chem B 103: 5736–5741

    Article  Google Scholar 

  • Rstsep M, Wu H-M, Hayes JM, Blankenship RE, Cogdell RJ and Small GJ (1998) Stark hole-burning studies of three photosynthetic complexes. J Phys Chem B 102: 4035–4044

    Article  Google Scholar 

  • Reddy NRS, Jankowiak R and Small GJ (1995) High-pressure hole-burning studies of the bacteriochlorophyll a antenna complex from Chlorobiurn tepidum. J Phys Chem 99: 16 168–16 178

    Google Scholar 

  • Redfearn ER and Powis R (1968) The quinones of green photosynthetic bacteria. Biochem J 106: 50 P

    Google Scholar 

  • Remigy HW, Stahlberg H, Fotiadis D, Muller SA, Wolpensinger B, Engel A, Hauska G and Tsiotis G (1999) The reaction center complex from the green sulfur bacterium Chiorobium tepidurn: A structural analysis by scanning transmission electron microscopy. J Mol Bio 290: 85 1–858

    Google Scholar 

  • Renger Th and May V (1998) Ultrafast exciton motion in photosynthetic antenna systems: The FMO complex. J Phys Chern A 102: 4381–4391

    Article  CAS  Google Scholar 

  • Saga Y, Matsuura K and Tamiaki H (2001) Spectroscopic studies on self-aggregation of bacteriochlorophyll-e in non-polar organic solvents: Effects ofstereoisomeric configuration at the 31-position and alkyl substituents at the 81-position. Photochem. Photobiol 74: 72–80

    Google Scholar 

  • Sakuragi Y, Frigaard NU, Shimada K and Matsuura K (1999) Association of the bacteriochlorophyll a with the CsrnA protein in chlorosomes of the photosynthetic green filamentous bacterium Chlorojiexus aurantiacus. Biochim et Biophys Acta-Biocncrgetics 1413: 172–180

    Article  CAS  Google Scholar 

  • Sakurai H, Kusumoto N and Inouc K (1996) Function of the reaction center of green sulfur bacteria. Photochcm Photobiol, 64: 5–13

    Article  CAS  Google Scholar 

  • Savikhin S and Struve WS (1994) Ultrafast energy transfer in FMO trimers from the green bacterium Chlorobium tepidurn. Biochem 33: 11200–11208

    Article  CAS  Google Scholar 

  • Savikhin S, Zhou WL, Blankenship RE and Struve WS (1994a) Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a-Protein antenna trimers from the green bacterium Chlorobiuni tepidunz. Biophys J 66: 110 113

    Google Scholar 

  • Savikhin S, Zhu Y, Lin S, Blankcnship RE and Struve WS (1 994b) Fcmtosccond spcctroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chcm 98: 10322–10334

    Google Scholar 

  • Savikhin S, van Noort PT, Zhu Y, Lin S, Blankenship RE and Struve WS (1995) Ultrafast energy transfer in light harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phys 194: 245–258

    Article  PubMed  CAS  Google Scholar 

  • Savikhin S, Zhu Y, Blankenship RE and Struve WS (1996) Intraband energy transfers in the BChl c antenna ofchlorosomes from the green photosynthetic bacterium Chioroflexus aurantiacus. J Phys Chem 100: 17978–17980

    Article  CAS  Google Scholar 

  • Savikhin 5, Buck DR and Struve WS (1997) Pump-probe anisotropies of Fenna-Matthews-Olson protein trimers from Chiorobium tepidum: A diagnostic for exciton localization? Biophys J 73: 2090–2096

    Article  PubMed  CAS  Google Scholar 

  • Savikhin S, Buck DR and Struve WS (1998) Toward level-to- level energy transfers in photosynthesis: The Fenna-MatthewsOlson Protein. I Phys Chem B 102: 5556–5565

    Google Scholar 

  • Scheer H (1991) Structure and occurrence of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 3–30. CRC Press, Boca Raton

    Google Scholar 

  • Schmidt K (1980) A comparative study on the composition of chlorosomes [chiorobium vesicles] and cytoplasmic membranes from Chiorofiexus aurantiacus strain Ok-70-fl and Chlorobium lirnicola fthiosulfalophilum strain 6230. Arch Microbiol 124: 21–31

    Article  CAS  Google Scholar 

  • Schoch S, Oster U, Mayer K, Feick R and Rfldiger W. (1999) Substrate specificity of overexpressed bacteriochlorophyll synthase from Chloroflexus aurantiacus. In: ArgyroundiAkoyunoglou JH and Senger H, Eds, The Chloroplast: From Molecular Biology to Biotechnology, pp 213–216. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Sirevhg R (1995) Carbon metabolism in green bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp. 871–883. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Smith KM (1994) Nomenclature of the bacteriochlorophylls c, d, and e. Photosynth Res 41: 23–26

    Article  CAS  Google Scholar 

  • Smith KM, Goff DA, Fajer J and Barkigia KM (1982) Chirality and structures of bacteriochiorophylls d. JAm Chem Soc 104: 3747–9

    Article  CAS  Google Scholar 

  • Smith KM, Kehres LA and Fajer J (1983) Aggregation of bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105: 1387–1389

    Google Scholar 

  • Staehelin LA, Golecki JR, Fuller RC and Drews G (1978) Visualization ofthe supramolecular architecture ofchlorosonies (Chlorobium type vesicles) in freeze-fractured cells of Chlorofiexus aurantiacus. Arch Microbiol 119: 269 277

    Google Scholar 

  • Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chiorobiurn lirnicola. Biochim Biophys Acta 589: 30–45

    Article  PubMed  CAS  Google Scholar 

  • Steensgaard DB, van Walrec CA, Baneras L, Borrego CM, Garcia-Gil J, Holzwarth AR (1999) Evidence for spatially separate bacteriochlorophyll c and bacteriochiorophyll dpools within the chlorosornal aggregate of the green sulfur bacterium Chlorobium liniicola. Photosynthesis Research 59: 231–241

    Article  CAS  Google Scholar 

  • Steensgaard DB, van Walree CA, Permentier H, Baneras L, Borrego CM, Garcia-Gil J, Aartsma TJ, Amesz land Holzwarth AR (2000) Fast energy transfer between BChI d and BChl c in chlorosomcs ofthe green sulfur bacterium Chlorobium limicola. Biochim Biophys Acta 1457: 7 1–80

    Google Scholar 

  • Takaichi S, Tsuji K, Matsuura K and Shimada K (1995) A monocyclic carotenoid glucoside ester is a major carotcnoid in the green filamentous bacterium Chiorofiexus auranhiacus. Plant Cell Physiol 36: 773–778

    CAS  Google Scholar 

  • Tamiaki H (1996) Supramolecular structure in extramembraneous antennae of green photosynthetic bacteria. Coordination Chem Rev 148: 183–197

    Article  CAS  Google Scholar 

  • Tamiaki H, Kubo M and Oba T (2000) Synthesis and self- assembly of zinc methyl bacteriopheophorbide-f and its homolog. Tetrahedron 56: 6245–6257

    Article  CAS  Google Scholar 

  • Theroux SJ, Redlinger TE, Fuller RC and Robinson SJ (1990) Gene encoding the 5.7 kilodalton chiorosome protein of Chloroflexus aurantiacus: Regulated message levels and a predicted carboxy terminal protein extension. J Bacteriol 172: 4497–4504

    Google Scholar 

  • Tokita S, Frigaard NU, Hirota M, Shimada K and Matsuura K (2000) Quenching of bacterioehlorophyll fluorescence in chlorosomes from Chlorqfiexus aurantiacus by exogenous quinones. Photochem Photobiol 72: 345–350

    Article  PubMed  CAS  Google Scholar 

  • Tronrud DE and Matthews BW (1993) Refinement of the structure of a water-soluble antenna complex from green photosynthetic bacteria with incorporation of the chemically determined amino acid sequence. In: Norris J and Deisenhofer H (eds) The Photosynthetic Reaction Center, Vol I pp 13–21. Academic Press, San Diego

    Chapter  Google Scholar 

  • Tronrud DE, Sehmid MF and Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Frosthecochioris aestuarii refined at 1.9 A resolution. J Mol Biol 188: 443–454

    Article  PubMed  CAS  Google Scholar 

  • Trüper HG and Pfennig N (1992) The family Chlorobiaceae. In: Balows A, TrOper HG, Dworkin M, Sehliefer KH and Harder W (eds) The Prokaryotes, 2nd Ed., pp 3583–3592. Springer-Verlag, Berlin

    Google Scholar 

  • Tsuji K, Takaichi 5, MatsuuraK and Shimada K(1 995) Specificity of carotenoids in chlorosomes of the green filamentous bacterium, Chlorofiexus aurantiacus. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol 4, pp 99–103, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Van de Meent, EJ, Kobayashi M, Erkelens C, Van Veelen PA, Otte SCE, Inoue K, Watanabe T and Amesz, J (1992) The nature ofthe primary electron acceptor in green sulfur bacteria. Biochim Biophys Acta 1102: 371–378

    Article  Google Scholar 

  • van Dorssen RJ, Gerola PD, Olson JM and Amesz J (1986a) Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium lirnicola. Biochim Biophys Ada 848: 77–82

    Article  Google Scholar 

  • van Dorssen Ri, Vasmel H and Amesz J (l986b) Pigment organization and energy-transfer in the green photosynthetic bacterium Chloroflexus aurantiacus.2. The chlorosome. Photosynth Res 9: 33–45

    Google Scholar 

  • van Gemerden H and Mas J (1995) Ecology of phototrophie sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 49–85. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van Grondelle R, Dekker JP, Gilibro T and Sundström W (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Article  CAS  Google Scholar 

  • van Mourik F, Verwijst RR, Mulder JM and van Grondelle R (1994) Singlet-triplet spectroscopy of the light-harvesting BChl a complex of Prosthecochloris aesluarii. The nature of the low energy 825 nni transition. J Phys Chem 98: 10307–10312

    Article  Google Scholar 

  • van Noort PL, Zhu Y, LoBrutto R and Blankenship RE (1997) Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. Biophys J 72: 316–325

    Article  PubMed  Google Scholar 

  • van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR, de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chiorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spedtroscopy Biochemistry 40: 1587–1595

    Google Scholar 

  • van Walree CA, Sakuragi Y, Steensgaard DB, Bosinger CS, Frigaard NU, Cox RP, Holzwarth AR and Miller M (1999) Effect of alkaline treatment on bacteriochiorophyll a, quinines and energy transfer in chlorosomes from Chlorobium tepidum and Chiorobium phaeobacteroides. Photochem Photobiol 69: 322–328

    Article  Google Scholar 

  • VassilievaEV, FrigaardN-F and BryantDA (2000) Chlorosomes: The light-harvesting complexes of green bacteria. The Spectrum 13: 7–13

    Google Scholar 

  • Vassilieva EV, Antonkine ML, Zybailov BL, Yang F, Jakobs CU, Golbeck JH and Bryant DA (2001) Electron transfer may occur in the chlorosome envelope: The CsmI and CsmJ proteins of ehlorosomes are 2Fe-2S ferredoxins. Biochemistry 40: 464–473

    Article  PubMed  CAS  Google Scholar 

  • Vulto SIE, Streltsov AM and Aartsma Ti (1997) Excited state energy relaxation in the FMO complexes of the green bacterium Prosthecochioris aestuarii at low temperatures. J Phys Chem B 101: 4845–4850

    Article  CAS  Google Scholar 

  • Vulto SIE, Neerken S, Louwe RJW, de Baat MA, Amesz J and Aartsma Ti (l998a) Excited-state structure and dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria. J Phys Chem B 102: 10630–10635

    Google Scholar 

  • Vulto SIE, de Baat MA, Louwe RJW, Permentier HP, Neef T, Miller M, van Amerongen H and Aartsma TJ (I 998b) Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chiorobium tepidum at 6 K. J Phys Chem B 102: 9577–9582

    Google Scholar 

  • Vulto SIE, de Baat MA, Neerken S, Nowak FR, van Amerongen H, Amesz J and Aartsma TJ (1999) Excited state dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria: A kinetic model. J Phys Chem B 103: 8153–8161

    Google Scholar 

  • Wagner-Huber R, Brunisholz R, Frank G and Zuber H (1988) The BChI c/e-binding polypeptides from chlorosomes of green photosynthetic bacteria. FEBS Lett 239: 8–12

    Article  CAS  Google Scholar 

  • Wagner-Huber R, Fischer UR, Brunisholz R, Runibeli G, Frank G and Zuber H (1991) The primary structure of the presumable BChI d-biding polypeptide of Chiorobium vibrioforme f. thiosulfatophiluot. Bioehim Biophys Acta 1060: 97–105

    Article  Google Scholar 

  • Wang J, Brune DC and Blankenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Umetsu M, Kobayashi M, Nozawa T (1999) C-l3- and N-l5-NMR studies on the intact bacteriochlorophyll c dimers in solutions. JAm Chem Soc 121: 9363–9369

    Article  CAS  Google Scholar 

  • Watanabe Y, Feick RG and Shiozawa JA (1995) Cloning and sequencing of the genes encoding the lighl-harvesting B806–866 polypeptidcs and initial studies on the transcriptional organization of Puf2b, Puf2a And Puf2c in Chioroflexusaurantiacus. Arch Microbiol 163: 124–130

    PubMed  CAS  Google Scholar 

  • Weehsler T, Suter F, Fuller RC and Zuber H. (l985a) The complete amino acid sequence of the bacterioehlorophyll c binding polypeptide from chiorosomes of the green photosynthetic bacterium Chioroflexus aurantiacus, FEBS Lett 181: 173–178

    Google Scholar 

  • Wechsler T, Brunisholz R, Suter F Fuller RC and Zuber H. (1 985b) The complete amino acid sequence of a bacteriochlorophyll a binding polypeptide isolated from the cytoplasmic membrane of the green photosynthetic bacterium Chioroflexus aurantiacus. FEBS Lett 19 1: 34–38

    Google Scholar 

  • Wechsler TD, Brunisholz, RA, Frank G, Suter F and Zuber H. (1987) The complete amino acid sequence of the antenna polypeptide B806–866–13 from the cytoplasmic membrane of the green bacterium Chlorofiexus aurantiacus. FEBS Lett 210: 189 – 194

    Article  CAS  Google Scholar 

  • WechslerTD, Brunisholz RA, Frank G, ZuberH (1991) Isolation and protein chemical characterization ofthe B806–866 antenna complex of the green thermophilic bacterium Chloroflexus aurantiacus. J Photochem Photobiology B. 8: 189–197

    Article  Google Scholar 

  • Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ van Grondelle R and van Amerongen HV (2000) Electron- vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochioris aestuarii determined by temperature- dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104: 5825–5831

    CAS  Google Scholar 

  • Whitten WB, Olson JM and Pearlstein RM (1980)7-fold exciton splitting of the 810-nm band in bacteriochiorophyll a-proteins from green photosynthetic bacteria. Biochim Biophys Acta 591: 203–207 1980

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Wullink W, Knudsen J, Olson JM, Redlinger TE and Van Bruggen EFJ (1991) Localization of polypeptides in isolated chlorosomes from green phototrophic bacteria by immunogold labeling electron microscopy. Biochim Biophys Acta 1060: 97–105

    Article  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Zhou W (1995) Studies of the bacteriochlorophyll a protein from the photosynthetic green sulfur bacterium Chiorobium tepidum. Ph. D. Dissertation, Arizona State University, Tempe

    Google Scholar 

  • Zhou W, LoBrutto R, Lin S and Blankenship RE (1994) Redox effects on the bacteriochlorophyll a-containing FennaMatthews-Olson protein from Chiorobiuni tepidum. Photosynth Res4l: 89–96

    Google Scholar 

  • Zhu YW, Ramakrishna BL, van Noort, P1 and Blankenship RE (1995) Microscopic and spectroscopic studies ofuntreated and hexanol-trcated chlorosomcs from Chlorofiexus aurantiacus. Biochim Biophys Acta 1232: 197–207

    Google Scholar 

  • Zuber H and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: Principles and variability. In: Scheer H (Cd) Chlorophylls, pp 627–703. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blankenship, R.E., Matsuura, K. (2003). Antenna Complexes from Green Photosynthetic Bacteria. In: Green, B.R., Parson, W.W. (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2087-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2087-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5468-5

  • Online ISBN: 978-94-017-2087-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics