Skip to main content

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 2))

Abstract

Male sterility in plants is widely recognized as a useful trait in breeding programs and in the commercial production of F1 hybrid seed. Male sterile plants have been reported in a large number of families and genera, and in almost all of the major crop plants (Kaul 1988). Although most known male sterile lines are of natural occurrence, male sterility can also be induced by radiations (e.g., Driscoll and Barlow 1976), chemical treatments (Cross and Ladyman 1991) or genetic engineering (Mariani et al. 1990). In addition, novel male sterile plants can be generated by gene transfer through protoplast fusion, i.e., by cybrid formation (e.g., Kofer et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahokas, H. (1976) Evidence of a pollen esterase capable of hydrolysing sporopollenin. Experientia 32: 175–177.

    Article  CAS  Google Scholar 

  • Bhadula, S.K. and Sawhney, V.K. (1987) Esterase activity and isozymes during the ontogeny of stamens of male fertile Lycopersicon esculentum Mill., a male sterile stamenless-2 mutant and the low temperature reverted mutant. Plant Sci. 52: 187–194.

    Article  CAS  Google Scholar 

  • Bhadula, S.K. and Sawhney, V.K. (1989) Amylolytic activity and carbohydrate levels during the stamen ontogeny of a male fertile, and a `gibberellin-sensitive’ male sterile mutant of tomato (Lycopersicon esculentum). J. Exp. Bot. 40: 789–794.

    Google Scholar 

  • Bhadula, S.K. and Sawhney, V.K. (1991) Protein analysis during the ontogeny of normal and male sterile stamenless-2 mutant stamens of tomato (Lycopersicon esculentum Mill.). Biochem. Genet. 29: 29–41.

    Google Scholar 

  • Bhandari, N.N. (1984) The microsporangium. In: B..M. Johri (ed.), Embryology of Angiosperms, pp. 53–121. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Bishop, C.J. (1954) A stamenless male sterile tomato. Am. J. Bot. 41: 540–542.

    Google Scholar 

  • Clayberg, C.D., Butler, L., Kerr, E.A., Rick, C.M. and Robinson, R.W. (1966) Third list of known genes in the tomato. J. Hered. 57: 189–196.

    Google Scholar 

  • Clayberg CD, Butler L, Kerr EA, Rick CM and Robinson RW (1971) Report of the gene list committee. Tomato Gen. Coop. Rep. 21: 2–10.

    Google Scholar 

  • Cross, J.W. and Ladyman, J.A.R. (1991) Chemical agents that inhibit pollen development: tools for research. Sex. Plant Reprod. 4: 235–243.

    Google Scholar 

  • Driscoll, C.J. (1986) Nuclear male sterility systems in seed production of hybrid varieties. CRC Critical Rev. in Plant Sci. 3: 227–256.

    Google Scholar 

  • Driscoll, C.J. and Barlow, K.K. (1976) Male sterility in plants — induction, isolation and utilization. In: Proceedings of an Advisory Group Meeting on Induced Mutations in Cross Breeding, pp. 123–131. FAO/IAEA, Vienna.

    Google Scholar 

  • Evans, P.L. and Malmberg, R.L. (1989) Do polyamines have roles in plant development? Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 235–269.

    Google Scholar 

  • Frankel, R. (1973) The use of male sterility in hybrid seed production. In: R. Moav (ed.), Agriculture Genetics, pp. 85–94. J. Wiley and Sons, New York.

    Google Scholar 

  • Frankel, R. and Galun, E. (1977) Pollination Mechanisms, Reproduction and Plant Breeding. Springer-Verlag, Berlin.

    Google Scholar 

  • Gabelman, W.H. (1956) Male sterility in vegetable breeding. Brookhaven Symp. Biol. 9: 113–122. Galston, A.W. and Sawhney, R.K. (1990) Polyamines in plant physiology. Plant Physiol. 94: 406–410.

    Google Scholar 

  • Greyson, R.I. and Walden, D.B. (1976) Possibilities for gibberellin-male sterile relationships in corn — a proposal. Maize Genet. Coop. Newslett. 50: 116–117.

    Google Scholar 

  • Hafen, L. and Stevenson, E.C. (1955) New male sterile and stamenless mutants. Tomato Genet. Coop. Rep. 5: 17.

    Google Scholar 

  • Hafen, L. and Stevenson, E.C. (1958) Preliminary studies of five stamenless mutants. Tomato Genet. Coop. Rep. 8: 17–18.

    Google Scholar 

  • Henderson, W.R. and Brown, W.N. (1958) A stamenless male sterile associated with a change in leaf shape. Tomato Genet. Coop. Rep. 8: 20–21.

    Google Scholar 

  • Hockett, E.A., Baenziger, P.S. and Steffens, G.L. (1978) A proposal for increased research on chemical induction of fertility in genetic male-sterile barley. Euphytica 27: 109–111.

    Article  Google Scholar 

  • Jorgensen, R.A. (1987) Synthetic linkages and genetic stability in transgenic plants: implications for breeding. In: D.J. Nevins and R.A. Jones (eds.), Tomato Biotechnology, pp. 179–188. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Kaul, M.L.H. (1988) Male Sterility in Higher Plants. Monographs on Theoretical and Applied Genetics, vol. 10. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Kofer, W., Glimelius, K. and Bonnett, H.T. (1990) Modification of floral development in tobacco induced by fusion of protoplasts of different male-sterile cultivars. Theor. Appl. Genet. 79: 97–102. Koltunow, A.M., Truettner, J., Cox, K.H., Wallroth, M. and Goldberg, R.B. (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224.

    Google Scholar 

  • Lapushner, D. and Frankel, R. (1967) Practical aspects, and the use of male sterility in the production of hybrid tomato seed. Euphytica 16: 300–310.

    Article  Google Scholar 

  • Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J. and Goldberg, R.B. (1990) Induction of male sterility in plants by a chimeric ribonuclease gene. Nature 347: 737–741.

    Article  CAS  Google Scholar 

  • Martin-Tanguy, J. (1985) The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regulation 3: 381–399.

    Article  CAS  Google Scholar 

  • Mutschler, M.A., Tanksley, E.D. and Rick, C.M. (1987) Linkage maps of the tomato (Lycopersicon esculentum). Tomato Genet. Coop. Rep. 37: 5–34.

    Google Scholar 

  • Nash, A.F., Gardner, R.G. and Henderson, W.R. (1985) Evaluation of allelism and seed set of eight stamenless tomato mutants. Hortsci. 20: 440–442.

    Google Scholar 

  • Pacini, E. (1990) Tapetum and microspore functions. In: S. Blackmore and R.B. Knox (eds.), Microspores: Evolution and Ontogeny, pp. 213–237. Academic Press, London.

    Google Scholar 

  • Phatak, S.C., Wittwer, S.H., Honma, S. and Bukovac, M.J. (1966) Gibberellin-induced anther and pollen development in a stamenless tomato mutant. Nature 209: 635–636.

    Article  CAS  Google Scholar 

  • Philouze, J. (1974) Allelism tests with sl, 51 5 and cs. Tomato Genet. Coop. Rep. 24: 16–17.

    Google Scholar 

  • Rao, M.K., Uma Devi, K. and Arundhati, A. (1990) Application of genic male sterility in plant breeding. Plant Breeding 105: 1–25.

    Article  Google Scholar 

  • Rastogi, R. and Sawhney, V.K. (1986) In vitro culture of young floral buds of tomato (Lycopersicon esculentum). Plant Sci. 47: 221–227.

    Google Scholar 

  • Rastogi, R. and Sawhney, V.K. (1988) Flower culture of a male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). Am. J. Bot. 75: 513–518.

    Google Scholar 

  • Rastogi, R. and Sawhney, V.K. (1990a) Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). I. Level of polyamines and their biosynthesis in normal and mutant flowers. Plant Physiol. ( U.S. ) 93: 439–445.

    Google Scholar 

  • Rastogi, R. and Sawhney, V.K. (1990b) Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). II. Effects of polyamines and their biosynthetic inhibitors on the development of normal and mutant flowers cultured in vitro. Plant Physiol (U.S.) 93: 446–452.

    Article  CAS  Google Scholar 

  • Rick, C.M. (1948) Genetics and development of nine male-sterile tomato mutants. Hilgardia 18: 599–633.

    Google Scholar 

  • Rick, C.M. (1980) Tomato. In: W.R. Fehr and H.H. Hadley (eds.), Hybridization of Crop Plants, pp 669–680. Am. Soc. Agron. Crop Sci. Publ., Madison, WI.

    Google Scholar 

  • Rick, C.M. and Boynton, J.E. (1967) A temperature-sensitive male-sterile mutant of the tomato. Am. J. Bot. 54: 601–611.

    Google Scholar 

  • Rick, C.M. and Robinson, J. (1951) Inherited defects of floral structure affecting fruitfulness in Lycopersicon esculentum. Am. J. Bot. 38: 639–652.

    Google Scholar 

  • Sawhney, V.K. (1974) Morphogenesis of the stamenless-2 mutant in tomato. III. Relative levels of gibberellins in the normal and mutant plants. J. Exp. Bot. 25: 1004–1009.

    Google Scholar 

  • Sawhney, V.K. (1983) Temperature control of male sterility in a tomato mutant. J. Hered. 74: 51–54.

    Google Scholar 

  • Sawhney, V.K. (1984) Hormonal and temperature control of male-sterility in a tomato mutant. Proc. VIII Int. Symp. on Sexual Reproduction in Seed Plants, Ferns and Mosses, pp. 36–38. Purdoc Publ., Wageningen, The Netherlands.

    Google Scholar 

  • Sawhney, V.K. (1992) Floral mutants in tomato: development, physiology and evolutionary implications. Can. J. Bot. 70: 701–707.

    Google Scholar 

  • Sawhney, V.K. and Bhadula, S.K. (1988) Microsporogenesis in the normal and male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). Can. J. Bot. 66: 2013–2021.

    Google Scholar 

  • Sawhney, V.K. and Greyson, R.I (1969) External ovules associated with stamenless mutants. Tomato Genet. Coop. Rep. 19: 24–25.

    Google Scholar 

  • Sawhney, V.K. and Greyson, R.I. (1973a) Morphogenesis of the stamenless-2 mutant in tomato. I. Comparative description of the flowers and ontogeny of stamens in the normal and mutant plants. Am. J. Bot. 60: 514–523.

    Google Scholar 

  • Sawhney, V.K. and Greyson, R.I. (1973b) Morphogenesis of the stamenless-2 mutant in tomato. II. Modifications of sex organs in the mutant and normal flowers by plant hormones. Can. J. Bot. 51: 2473–2479.

    Google Scholar 

  • Sawhney, V.K. and Greyson, R.I. (1979) Interpretations of determination and canalisation of stamen development in a tomato mutant. Can. J. Bot. 57: 2471–2477.

    Google Scholar 

  • Sawhney, V.K. and Polowick, P.L. (1986) Temperature-induced modifications in the surface features of stamens of a tomato mutant: an SEM study. Protoplasma 131: 75–81.

    Article  Google Scholar 

  • Schmidt, V., von Schmidt, H. and Hagemann, R. (1979) Eigenschaften pollensteriler Mutanten der Tomate unter dem Aspekt ihrer Eignung für Züchtungsprogramme. Tag-Ber, Akad Landwirtsch-Wiss DDR, Berlin. S 179–183.

    Google Scholar 

  • Singh, S., Sawhney, V.K. and Pearce, D.W. (1992) Temperature effects on endogenous indole-3acetic acid levels in leaves and stamens of the normal and male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). Plant Cell Environ. 15: 373–377.

    Article  CAS  Google Scholar 

  • Smith, A.G., Gasser, C.S., Budelier, K.A. and Fraley, R.T. (1990) Identification and characterization of stamen-and tapetum-specific genes from tomato. Mol. Gen. Genet. 222: 9–16.

    Google Scholar 

  • Smith, L. (1947) Possible practical method for producing hybrid seed of self-pollinated crops through the use of male sterility. J. Am. Soc. Agron. 39: 260–261.

    Google Scholar 

  • Stevens, M.A. and Rick, C.M. (1986) Genetics and breeding. In: J.G. Atherton and J. Rudich (eds.), The Tomato Crop, pp. 35–109. Chapman and Hall Ltd, London.

    Chapter  Google Scholar 

  • Vithanage, H. and Knox, R.B. (1976) Pollen-wall proteins: quantitative cytochemistry of the origins of intine and exine systems in Brassica oleracea. J. Cell Sci. 21: 423–435.

    PubMed  CAS  Google Scholar 

  • Von Schmidt, H. and Schmidt, V. (1981) Untersuchungen an pollensterilen, stamenless-ähnlichen Mutanten von Lycopersicon esculentum Mill. II Normalisierung von ms-15 und ms-33 mit Gibberellinsaure (GA3). Biol. Zentralbl. 100: 691–696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sawhney, V.K. (1994). Genic male sterility in tomato and its manipulation in breeding. In: Williams, E.G., Clarke, A.E., Knox, R.B. (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Advances in Cellular and Molecular Biology of Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1669-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1669-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4340-5

  • Online ISBN: 978-94-017-1669-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics