Skip to main content

Modelling plant disease epidemics

  • Chapter
Epidemiology of Mycotoxin Producing Fungi

Abstract

An epidemic is the progress of disease in time and space. Each epidemic has a structure whose temporal dynamics and spatial patterns are jointly determined by the pathosystem characteristics and environmental conditions. One of the important objectives in epidemiology is to understand such spatio-temporal dynamics via mathematical and statistical modelling. In this paper, we outline common methodologies that are used to quantify and model spatio-temporal dynamics of plant diseases, with emphasis on developing temporal forecast models and on quantifying spatial patterns. Several examples of epidemiological models in cereal crops are described, including one for Fusarium head blight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlers D (1989) Integrated plant protection for fungus diseases in winter oilseed rape. Gesunde Pflanzen 41: 306–311

    Google Scholar 

  • Anderson RM and May RM (1979) Population biology of infectious diseases: part I. Nature 280: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Andrivon D and Limpert E (1992) Origin and proportions of the components of composite populations of Erysiphe graminis f.sp. hordei. Journal of Phytopathology 135: 6–19

    Article  Google Scholar 

  • Barajas-Aceves M, Hassan M, Tinoco R and Vazquez-Duhalt R (2002) Effect of pollutants on the ergosterol content as indicator of fungal biomass. Journal of Microbiological Methods 50: 227–236

    Article  PubMed  CAS  Google Scholar 

  • Barrett JA (1978) A model of epidemic development in variety mixtures. In: Scott PR and Bainbridge A (eds) Plant Disease Epidemiology (pp 129–137 ) Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne

    Google Scholar 

  • Bateman GL, Dyer PS and Manzhula L (1995) Development of apothecia of Tapesia yallundae in contrasting populations selected by fungicides. European Journal of Plant Pathology 101: 695–699

    Article  CAS  Google Scholar 

  • Ben-Yephed Y, Genizi A and Siti E (1993) Sclerotial survival and apothecial production by Sclerotinia sclerotiorum following outbreaks of lettuce drop. Phytopathology 83: 509–513

    Article  Google Scholar 

  • Beresford RM and Royle DJ (1988) Relationships between leaf emergence and latent period of leaf rust (Puccinia hordei) on spring barley, and their significance for disease monitoring. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 95: 361–371

    Google Scholar 

  • Blunt SJ, Asher MJC and Gilligan CA (1992) The effect of sowing date on infection of sugar beet by Polymyza betae. Plant Pathology 41: 148–153

    Article  Google Scholar 

  • Bolland GJ and Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 16: 93–108

    Article  Google Scholar 

  • Brasier CM (1990) The unexpected element: Mycovirus involvement in the outcome of two recent pandemics, Dutch elm disease and chestnut blight. In: Burdon JJ and Leather SR (eds) Pests, Pathogens and Plant Communities (pp 289–307 ) Blackwell, Oxford

    Google Scholar 

  • Brasset PR and Gilligan CA (1989) Fitting of simple models for field disease progress data for the take-all fungus. Plant Pathology 38: 397–407

    Article  Google Scholar 

  • Burgess DR and Hepworth G (1996) Biocontrol of Sclerotinia stem rot (Sclerotinia minor) in sunflower by seed treatment with Gliocladium virens. Plant Pathology 45: 583–592

    Article  Google Scholar 

  • Burrough PA (1987) Spatial aspects of ecological data. In: Jongman RHG, Braak CFG and van Tongeren OFR (eds) Data Analysis in Community and Landscape Ecology (pp 213–251 ) PUDOC, Wageningen, the Netherlands

    Google Scholar 

  • Campbell CL (1998) Disease progress in time: Modelling and data analysis. In: Gareth Jones D (ed) The Epidemiology of Plant Diseases (pp 181–206 ) Kluwer Academic Publishers, Dordrecht, the Netherlands

    Chapter  Google Scholar 

  • Campbell CL and Madden LV (1990) Introduction to Plant Disease Epidemiology. John Wiley and Sons, New York

    Google Scholar 

  • Chellemi DO, Rohrbach KG, Yost RS and Sonoda RM (1988) Analysis of the spatial pattern of plant pathogen and diseased plants using geostatistics. Phytopathology 78: 221–226

    Article  Google Scholar 

  • Cohlbach N, Lucas P and Meynard JM (1997) Influence of crop management on take-all development and disease cycles in winter wheat. Phytopathology 87: 26–32

    Article  Google Scholar 

  • Correll JC, Gordon TR and Elliott VJ (1988) Powdery mildew on tomato: The effect of planting date and triadimefon on disease onset, progress, incidence, and severity. Phytopathology 78: 512–519

    Google Scholar 

  • de Vallavieille-Pope C, Giosue S, Munk L, Newton AC, Niks RE, Ostergard H, Pons-Kuhnemann J, Rossi V and Sache I (2000) Assessment of epidemiological parameters and their use in epidemiological and forecasting models of cereal airborne diseases. Agronomie 20: 715–727

    Article  Google Scholar 

  • de Vallavieille-Pope C, Huber L, Leconte M and Goyeau H (1995) Comparative effects of temperature and interrupted wet periods on germination, penetration andinfection of Puccinia recondita f.sp. tritici and P. striiformis urediniospores on wheat seedlings. Phytopathology 85: 409–415

    Article  Google Scholar 

  • De Wolf ED, Madden LV and Lipps PE (2000) Risk assessment models for wheat Fusarium head blight. Phytopathology 90: S19

    Google Scholar 

  • Dix NJ and Webster J (1995) Fungal Ecology. Chapman and Hall, London, New York, USA

    Google Scholar 

  • Ferrandino FJ (1993) Dispersive epidemic waves. I. Focus expansion in a linear planting. Phytopathology 83: 795–802

    Article  Google Scholar 

  • Ferrandino FJ (1996) Length scale of disease spread: Fact or artefact of experimental geometry. Phytopathology 86: 806–811

    Google Scholar 

  • Ferrandino FJ (1998) Past non-randomness and aggregation to spatial correlation: 2DCORR, a new approach for discrete data. Phytopathology 88: 84–91

    Article  PubMed  CAS  Google Scholar 

  • Fitt BDL, Gregory PH, Todd AD, McCartney HA and MacDonald OC (1987) Spore dispersal and plant disease gradients: A comparison between two empirical models. Journal of Phytopathology 118: 227–242

    Google Scholar 

  • Fleiss JL (1981) Statistical Methods for Rates and Proportions, 2nd edn. Wiley, New York, USA

    Google Scholar 

  • Fleming RA (1980) The potential for control of cereal rust by natural enemies. Theoretical Population Biology 18: 374–395

    Article  Google Scholar 

  • Francl LJ and Panigrahi S (1997) Artificial neural network models of wheat leaf wetness. Agricultural and Forest Meteorology 88: 57–65

    Article  Google Scholar 

  • Francl LJ, Panigrahi S, Pahdi T, Gillespie TJ and Barr A (1995) Neural network models that predict leaf wetness. Phytopathology 85: 1128

    Google Scholar 

  • Gibson GJ (1997) Markov Chain Monte Carlo methods for fitting spatiotemporal stochastic models in plant epidemiology. Applied Statistics 46: 215–233

    Google Scholar 

  • Gilligan CA (1985) Mathematical modelling of crop disease. In: Gilligan CA (ed) Advances in Plant Pathology, Vol 3 (p 255 ) Academic Press, Inc, New York

    Google Scholar 

  • Gottwald TR (1995) Spatio-temporal analysis and isopath dynamics of citrus scab in nursery plots. Phytopathology 85: 1082–1092

    Article  Google Scholar 

  • Gottwald TR, Avinent L, Llacer G, Hermoso de Mendoza A and Cambra M (1995) Analysis of spatial spread of sharka (plum pox virus) in apricot and peach orchards in eastern Spain. Plant Disease 79: 266–278

    Article  Google Scholar 

  • Gottwald TR, Cambra M, Moreno P, Camarasa E and Piquer J (1996) Spatial and temporal analysis of citrus tristeza virus in eastern Spain. Phytopathology 86: 45–55

    Article  Google Scholar 

  • Gourbiere F, Gourbiere S, van Maanen A, Vallet G and Auger P (1999) Proportion of needles colonised by one fungal species in coniferous litter: The dispersal hypothesis. Mycological Research 103: 353–359

    Google Scholar 

  • Gray SM, Moyer JW and Bloomfield P (1986) Two-dimensional distance class model for quantitative description of virus-infected plant distribution lattices. Phytopathology 76: 243–248

    Article  Google Scholar 

  • Gumpert F-M, Geiger HH and Stahle U (1987) A mathematical model of the epidemics in homogeneous and heterogeneous host stands. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz 94: 206–215

    Google Scholar 

  • Gutierrez AP, DeVay JE and Frieverthauser GE (1983) A model of Verticillium wilt in relation to cotton growth and development. Phytopathology 73: 89–95

    Article  Google Scholar 

  • Hardwick NV (1998) Disease forecasting. In: Gareth Jones D (ed) The Epidemiology of Plant Diseases (pp 207–230 ) Kluwer Academic Publishers, Dordrecht, the Netherlands

    Chapter  Google Scholar 

  • Hosford RM Jr, Larez CR and Hammond JJ (1987) Interactions of wet periods and temperature on Pyrenophora tritici-repentis infection and development in wheats of different resistance. Phytopathology 77: 1021–1027

    Article  Google Scholar 

  • Huber L and Gillespie TJ (1992) Modelling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology 30: 553–577

    Article  Google Scholar 

  • Hughes G and Madden LV (1992) Aggregation and incidence of disease. Plant Pathology 41: 657–660

    Article  Google Scholar 

  • Hughes G and Madden LV (1993) Using the beta-binomial distribution to describe aggregated patterns of plant disease incidence. Phytopathology 83: 759–763

    Article  Google Scholar 

  • Hughes G, Madden LV and Munkvold GP (1996) Cluster sampling for disease incidence data. Phytopathology 86: 132–137

    Google Scholar 

  • Hughes G, McRoberts N, Madden LV and Nelson SC (1997) Validating mathematical models of plant-disease progress in space and time. IMA Journal of Mathematics Applied in Medicine and Biology 14: 85–112

    Article  Google Scholar 

  • Ingold CT (1971) Fungus Spores: Their Liberation and Dispersal. Clarendon Press, Oxford

    Google Scholar 

  • Ingold CT (1978) Role of mucilage in dispersal of certain fungi. Transactions of the British Mycological Society 70: 137–140

    Article  Google Scholar 

  • Jamaux I and Spire D (1994) Development of a polyclonal antibody-based immunoassay for the early detection of Sclerotinia sclerotiorum in rapeseed petals. Plant Pathology 43: 847–862

    Article  Google Scholar 

  • Jeger MJ (1986) The potential of analytic compared with simulation approaches to modelling in plant disease epidemiology. In: Leonard K and Fry W (eds) Plant Disease Epidemiology, Population Dynamics and Management, Vol 1 (pp 255–281 ) Macmillan, New York, USA

    Google Scholar 

  • Jeger MJ (2000) Theory and plant epidemiology. Plant Pathology 49: 651–658

    Article  Google Scholar 

  • Jeger MJ and Tamsett J (1983) The status of models in crop protection: An analysis using data base systems. WPRS Bulletin IV - 2: 57–76

    Google Scholar 

  • Jeger MJ and Viljanen-Rollinson SLH (2001) The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics 102: 32–40

    Article  Google Scholar 

  • Jeger MJ, Griffiths E and Jones DG (1981a) Effect of cereal cultivar mixtures on disease epidemics caused by splash-dispersed pathogens. In: Jenkyn JF and Plumb RT (eds) Strategies for the Control of Cereal Disease (pp 81–88 ) Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Jeger MJ, Jones DG and Griffiths E (1981b) Disease progress of non-specialised fungal pathogens in intraspecific mixed stands of cereal cultivars. II. Field experiments. Annals of Applied Biology 98: 199–210

    Google Scholar 

  • Jeger MJ, VanDenBosch F, Madden LV and Holt J (1998) A model for analysing plant-virus transmission characteristics and epidemic development. IMA Journal of Mathematics Applied in Medicine and Biology 15: 1–18

    Article  Google Scholar 

  • Johnson DA (1980) Effect of low temperature on the latent period of slow and fast rusting winter wheat genotypes. Plant Disease 64: 1006–1008

    Article  Google Scholar 

  • Johnson BN and McGill WB (1990) Comparison of ergosterol and chitin as quantitative estimates of mycorrhizal infection and Pinus contorta seedlings response to inoculation. Canadian Journal of Forest Research 20: 1125–1131

    Article  CAS  Google Scholar 

  • Kampmeijer P and Zadocks JC (1974) A simulator of foci and epidemics in mixtures, multilines and mosaics of resistant and susceptible plants. Simulation Monograph (p 50 ) Pudoc, Wageningen, the Netherlands

    Google Scholar 

  • Kotliar N and Wiens J (1990) Multiple scales of patchiness and patch structure: A hierarchical framework for the study of heterogeneity. Oikos 59 (2): 253–260

    Article  Google Scholar 

  • Kranz J (1975) Beziehungen zwischen Blattmasse und Befallsentwicklung bei Blatt Krankheiten. Zeitschrift fur Planzenkrankeiten und Pflanzenschutz 82: 641–654

    Google Scholar 

  • Kranz J and Royle DJ (1978) Perspectives in mathematical modelling of plant disease epidemics. In: Scott PR and Bainbridge A (eds) Plant Disease Epidemiology (pp 111–120 ) Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne

    Google Scholar 

  • Lacey J (1996) Spore dispersal–its role in ecology and disease: The British contribution to fungal aerobiology. Mycological Research 100: 641–660

    Article  Google Scholar 

  • Lalancette N and Hickey KD (1986) Disease progression as a function of plant growth. Phytopathology 76: 1171–1175

    Article  Google Scholar 

  • Lefol C and Morrall RAA (1996) Immunofluorescent staining of Sclerotinia ascospores on canola petals. Canadian Journal of Plant Pathology 18: 237–241

    Article  Google Scholar 

  • MacHardy WE (1996) Apple Scab: Biology, Epidemiology, and Management. American Phytopathological Society, St. Paul, MN, USA

    Google Scholar 

  • Madden LV (1992) Rainfall and dispersal of fungal spores. Advances in Plant Pathology 8: 29–79

    Google Scholar 

  • Madden LV and Hughes G (1995) Plant disease incidence: Distributions, heterogeneity, and temporal analysis. Annual Review of Phytopathology 33: 529–564

    Article  PubMed  CAS  Google Scholar 

  • Madden LV, Nault LR, Murral DJ and Apelt MR (1995) Spatial pattern analysis of the incidence of aster yellows disease in lettuce. Researches on Population Ecology 37: 279–289

    Article  Google Scholar 

  • Maddison AC, Holt J and Jeger MJ (1996) Spatial dynamics of a monocyclic disease in a perennial crop. Ecological Modelling 88: 45–52

    Article  Google Scholar 

  • McCartney HA (1997) The influence of environment on the development and control of disease. In: Rechcigl J (ed) Environmentally Safe Approaches to Crop Disease Control (pp 3–31 ) CRC Press, Bocan Ratan, Florida, USA

    Google Scholar 

  • McCartney HA and Fitt BDL (1998) Disease spread: Modelling development of loci. In: Gareth Jones D (ed) The Epidemiology of Plant Diseases (pp 137–160 ) Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • McMullen M, Jones R and Gallenburg D (1997) Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Disease 81: 1340–1348

    Google Scholar 

  • Mence MJ and Hildebrandt AC (1966) Resistance to powdery mildew in rose. Annals of Applied Biology 58: 309–320

    Article  Google Scholar 

  • Minogue KP and Fry WE (1983a) Models for the spread of disease: Model description. Phytopathology 73: 1168–1172

    Article  Google Scholar 

  • Minogue KP and Fry WE (1983b) Models for the spread of disease: Some experimental results. Phytopathology 73: 1173–1176

    Article  Google Scholar 

  • Nelson SC (1995) Spatiotemporal distance class analysis of plant disease epidemics. Phytopathology 85: 37–43

    Article  Google Scholar 

  • Nelson SC, Marsh PL and Campbell CL (1992) 2DCLASS, atwodimensional distance class analysis software for the personal computer. Plant Disease 76: 427–432

    Google Scholar 

  • Newton AC (1989) Measuring the sterol content of barley leaves infected with powdery mildew as a means of assessing partial resistance to Erysiphe graminis f.sp. hordei. Plant Pathology 38: 534–540

    Article  CAS  Google Scholar 

  • Newton AC and McGurk L (199 1) Recurrent selection for adaptation of Erysiphe graminis f.sp. hordei to partial resistance and the effect on expression of partial resistance of barley. Journal of Phytopathology 132: 328–338

    Google Scholar 

  • Nicholson P, Turner AS, Edwards SG, Bateman GL, Morgan LW, Parry DW, Marshall J and Nuttall M (2002) Development of stem-base pathogens on different cultivars of winter wheat determined by quantitative PCR. European Journal of Plant Pathology 108: 163–177

    Article  CAS  Google Scholar 

  • Norton GA, Holt J and Mumford JD (1993) Introduction to pest models. In: Norton GA and Mumford JD (eds) Decision Tools for Pest Management (pp 89–99 ) CAB International, Cambridge, UK

    Google Scholar 

  • Obst A, Lepschy-von Gleissenthall J and Beck R (1997) On the aetiology of Fusarium head blight of wheat in South Germany–preceding crops, weather conditions for inoculum production and head infection, proneness of the crop to infection and mycotoxin production. Cereal Research Communications 25: 699–703

    Google Scholar 

  • Perry JN (1995) Spatial-analysis by distance indexes. Journal of Animal Ecology 64: 303–314

    Article  Google Scholar 

  • Perry JN (1998) Measures of spatial pattern for counts. Ecology 79: 1008–1017

    Article  Google Scholar 

  • Pielou EC (1977) Mathematical Ecology. Wiley, New York

    Google Scholar 

  • Rabbinge R and Bastiaans L (1989) Combination models, crop growth and pests and diseases. In: Rabbinge R, Ward SA and van Laar HH (eds) Simulation and System Management in Crop Protection (pp 217–240 )

    Google Scholar 

  • Pudoc, Wageningen, the Netherlands Ridout MS and Xu X-M (2000) Relationships between several quadrat-based statistical measures used to characterise spatial aspects of data on disease incidence. Phytopathology 90: 568–575

    Google Scholar 

  • Ridout MS, Dem~etrio CGB and Firth D (1999) Estimating intraclass correlation for binary data. Biometrics 55: 137–148

    CAS  Google Scholar 

  • Rogers MN (1959) Some effects of moisture and host plant susceptibility on the development of powdery mildew of roses caused by Sphaerotheca pannosa var. rosae. Memoir of the Cornell University Agricultural Experiment Station, 363, 38 pp

    Google Scholar 

  • Rossi V, Racca P, Giosue S, Pancaldi D and Alberti I (1997) A simulation model for the development of brown rust epidemics in winter wheat. European Journal of Plant Pathology 103: 453–465

    Article  Google Scholar 

  • Savary S, Willocquet Land Teng P (1997) Modelling sheath blight epidemics in rice tillers. Agricultural Systems 55: 359–384

    Article  Google Scholar 

  • Segarra J, Jeger M and van den Bosch F (2001) Epidemic patterns and dynamics of plant disease. Phytopathology 91: 1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Shaw MW (1998) Pathogen population dynamics. In: Jones DG (ed) The Epidemiology of Plant Diseases (pp 161–180 ) Kluwer Academic Publishers, Dordrecht, the Netherlands

    Chapter  Google Scholar 

  • Shtienberg D (2000) Modelling: The basis for rationale disease management. Crop Protection 19: 747–752

    Article  Google Scholar 

  • SiefertRP (1981) Applications of a mycological database to principles and concepts of population and community ecology. In: Wicklow DT and Carroll GC (eds) The Fungal Community, its Organisation and Role in the Ecosystem Mycological Series, Vol 2 (pp 11–23 ) Marcel Dekker, Inc., New York, USA

    Google Scholar 

  • Stein A, Kocks CG, Zadoks JC, Frinking HD, Ruissen MA and Myers DE (1994) A geostatistical analysis of the spatiotemporal development of downy mildew epidemics in cabbage. Phytopathology 84: 1227–1239

    Article  Google Scholar 

  • Sutherst RW (1993) Role of modelling in sustainable pest management. In: Corey S, Dall D and Milne W (eds) Pest Control and Sustainable Agriculture (pp 66–71 ) CSIRO, Australia

    Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature 189: 732–735

    Article  Google Scholar 

  • Thomas P (1984) Sclerotinia stem rot checklist. In: Canola Council of Canada (ed) Canola Growers Manual (pp 1053–1055 ) Minipeg, USA

    Google Scholar 

  • Tomerlin JR, Eversmeyer MG, Kramer CL and Browder LE (1983) Temperature and host effects on latent and infectious periods and on urediniospore production of Puccinia recondita f.sp. tritici. Phytopathology 73: 414–419

    Article  Google Scholar 

  • Turkinson TK and Morrall RAA (1993) Use of petal infestation to forecast Sclerotinia stem rot of canola: The influence of inoculum variation over the flowering period and canopy density. Phytopathology 83: 682–689

    Article  Google Scholar 

  • Twengstrom E, Sigvald R, Svensson C and Yuen J (1998) Forecasting Sclerotinia stem rot in spring sown oilseed rape. Crop Protection 17: 405–411

    Article  Google Scholar 

  • Van den Bosch F, Zadoks JC and Metz JAJ (1988) Focus expansion in plant disease. I: The constant rate focus expansion. Phytopathology 78: 55–58

    Google Scholar 

  • Van der Plank JE (1960) Analysis of epidemics. In: Horsfall JG and Cowling EB (eds) Plant Pathology: An Advance Treatise, Vol 3 (pp 229–289 ) Academic Press, New York, USA

    Google Scholar 

  • Van der Plank JE (1963) Plant Diseases: Epidemics and Control (p 344 ) Academic Press, New York, London

    Google Scholar 

  • Van der Plank JE (1982) Host-Pathogen Interactions in Plant Disease. Academic Press, New York, USA

    Google Scholar 

  • van Maanen A and Gourbiere F (2000) Balance between colonisation and fructification in fungal dynamics control: A case study of Lophodermium pinastri on Pinus sylvestris needles. Mycological Research 104: 587–594

    Article  Google Scholar 

  • van Maanen A, Debouzie D and Gourbiere F (2000) Distribution of three fungi colonising fallen Pinus sylvestris needles along altitudinal transects. Mycological Research 104: 1133–1138

    Article  Google Scholar 

  • Vloutoglou I, Fitt BDL and Lucas JA (1995) Periodicity and gradients in dispersal of Alternaria linicola in linseed crops. European Journal of Plant Pathology 101: 639–653

    Article  Google Scholar 

  • Waggoner PE (1986) Progress curves of foliar diseases: Their interpretation and use. In: Leonard KJ and Fry WE (eds) (pp 3–37) MacMillan, New York, USA

    Google Scholar 

  • Waggoner PE and Horsfall JG (1969) E.P.I.D.E.M.: A simulator of plant disease written for a computer. Connecticut Agricultural Experimental Station Bulletin, USA, 698

    Google Scholar 

  • Walters KFA and Hardwick NV (2000) Principles of pest and disease management in crop protection. In: Alford DV (ed) Pest and Disease Management Handbook (pp 1–18 ) Blackwell Science, Oxford

    Chapter  Google Scholar 

  • Webb CR, Gilligan CA and Asher MJC (2000) Modelling the effect of temperature on the development of Polymyxa betae. Plant Pathology 49: 600–607

    Article  Google Scholar 

  • Xu X-M (1999) Effects of temperature on the length of the incubation period of rose powdery mildew (Sphaerotheca pannosa var. rosae). European Journal of Plant Pathology 105: 13–21

    Article  Google Scholar 

  • Xu X-M and Ridout MS (1998) Effects of initial epidemic conditions, sporulation rate, and spore dispersal gradient on the spatio-temporal dynamics of plant disease epidemics. Phytopathology 88: 1000–1012

    Article  PubMed  CAS  Google Scholar 

  • Xu X-M and Ridout MS (2000a) Effects of quadrat size and shape, initial epidemic conditions, and spore dispersal gradient on the spatio-temporal statistics of plant disease. Phytopathology 90: 738–750

    Article  PubMed  CAS  Google Scholar 

  • Xu X-M and Ridout MS (2000b) Stochastic simulation of the spread of race specific and non-specific aerial fungal pathogens in cultivar mixtures. Plant Pathology 49: 207–218

    Google Scholar 

  • Xu X-M and Ridout MS (2001) Effects of prevailing wind direction on spatial statistics of plant disease epidemics. Journal of Phytopathology 149: 155–166

    Article  Google Scholar 

  • Xu X-M and Robinson JD (2000) The effects of temperature on the incubation and latent periods of hawthorn powdery mildew (Podosphaera clandestina). Plant Pathology 49: 791–797

    Article  Google Scholar 

  • Xu X-M and Robinson JD (2001) The effects of temperature on the incubation and the latent periods of the clematis powdery mildew (Erysiphe polygoni). Journal of Phytopathology 149: 565–568

    Article  Google Scholar 

  • Xu X-M, Robinson JD, Berrie AM and Harris DC (2001) Spatio-temporal dynamics of brown rot (Monilinia fructigena) on apple and pear. Plant Pathology 50: 569–578

    Article  Google Scholar 

  • Yang XB (1995) Analysis of variance–mean relationships of plant diseases. Journal of Phytopathology 143: 513–518

    Article  Google Scholar 

  • Zawolek MW and Zadoks JC (1992) Studies in focus development: An optimum for dual dispersal of plant pathogens. Phytopathology 82: 1288–1297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiangming Xu John A. Bailey B. Michael Cooke

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Maanen, A., Xu, XM. (2003). Modelling plant disease epidemics. In: Xu, X., Bailey, J.A., Cooke, B.M. (eds) Epidemiology of Mycotoxin Producing Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1452-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1452-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6387-8

  • Online ISBN: 978-94-017-1452-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics