Skip to main content

Constitutive Heterochromatin of Microtus agrestis: Molecular Organization and Genetic Activity in Mitotic and Meiotic Cells

  • Conference paper
Chromosomes Today

Abstract

The descriptive term “heterochromatin” was introduced by the botanist Emil Heitz in 1928 for chromosomal regions that remain condensed during interphase and stain intensively in contrast to euchromatin. Later a distinction was made between facultative heterochromatin (a transient state) and constitutive heterochromatin (Brown, 1966). The constitutive heterochromatin is a permanent entity of a chromosome and according to text book opinion considered “to be DNA that is never transcribed in any cell” (Alberts et al., 1983). Even more, the possibility was suggested “that constitutive heterochromatin per se has no function in either development or evolution” (John, 1988). It is a constituent of both plant and animal genomes. For mammals, the gonosomal c-heterochromatin of the European field vole Microtus agrestis has been considered typical for constitutive heterochromatin in general: it is C-band positive, late replicating, and transcriptionally inactive in various tissues (Sieger et al., 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Csink AK, Sass GL, Henikoff S (1997). Drosophila heterochromatin: retreats for repeats. In: van Driel R, Otte AP, eds. Nuclear Organization, Chromatin Structure, and Gene Expression. Oxford University Press, pp. 223–235.

    Google Scholar 

  • Daniels GR, Deininger PL (1985). Repeat sequence families derived from mammalian tRNA genes. Nature 317: 819–822.

    Article  PubMed  CAS  Google Scholar 

  • Dimitri P, Junakovic N (1999). Revising the selfish hypothesis–new evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15: 1123–1124.

    Article  Google Scholar 

  • Henikoff S (2000). Heterochromatin function in complex genomes. Biochimica et Biophysika Acta 1, 470: 1–8.

    Google Scholar 

  • Holmquist GP (1992). Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet 51: 17–37.

    PubMed  CAS  Google Scholar 

  • Hughes DC (2000). MIRs as agents of mammalian gene evolution. Trends Genet 16: 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T (2002). An RNA-guided pathway for the epigenome. Science 297: 2215–2218.

    Article  PubMed  CAS  Google Scholar 

  • John B (1988). The biology of heterochromatin. In: Verma RS, ed., Heterochromatin: Molecular and Structural Aspects, Cambridge University Press, pp. 1–147.

    Google Scholar 

  • Kalscheuer V, Singh AP, Nanda I, Sperling K, Neitzel H (1996). Evolution of the gonosomal heterochromatin of Microtus agrestis: rapid amplification of a large, multimeric, repeat unit containing a 3.0-kb (GATA) 11 -positive, middle repetitive element. Cytogenet Cell Genet 73: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH, Moran JV (1998). The impact of L1 retrotransposons on the human genome. Nat Genet 19: 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Kerem B, Kottusch-Geiseler V, Kalscheuer V, Goitein R, Sperling K, Marcus M (1988). DNase I sensitivity of Microtus agrestis active, inactive and reactivated X chromosomes in mouseMicrotus cell hybrids. Chromosoma 96: 277–230.

    Article  Google Scholar 

  • Korenberg JR, Rykowski MC (1988). Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Kunze B, Weichenhan D, Virks P, Traut W, Winking H (1996) Copy number of a clustered long-range repeat determine C-band staining. Cytogenet Cell Genet 73: 86–91.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Neitzel H, Sperling, Studer R, Epplen JT (1988). Simple GATA/GACA repeats characterize the X chromosomal heterochromatin of Microtus agrestis, European field vole (Rodentia, Cricetidae). Chromosoma 96: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Neitzel H, Kalscheuer V, Henschel S, Digweed M, Sperling K (1998). Beta-heterochromatin in mammals: evidence from studies in Microtus agrestis based on the extensive accumulation of L1 and non-L1 retroposons in the heterochromatin. Cytogenet Cell Genet 80: 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Neitzel H, Kalscheuer V, Singh AP, Henschel S, Sperling K (2002). Copy and paste: the impact of a new non-L1 retroposon on the gonosomal heterochromatin of Microtus agrestis. Cytogenet Genome Res 96: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001). Biology of mammalian L1 retrotransposons. Annu Rev Genet 35: 501–538.

    Article  PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Zacharias H, Zuccotti M, Capanna E (2001). The other chromatin. Chromosoma 110: 136–147.

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, Maerzke S, von Deimling O, Raman R, Sperling K, Neitzel H (1993). Oocytes from pachytene to dictyotene can easily be analysed in neonatal rodents. Chromosome Res 1: 209–312.

    Article  PubMed  CAS  Google Scholar 

  • Schulze I (2000). Untersuchung der Transkriptionsaktivität und des Replikationsverhaltens des konstitutiven Heterochromatins and des Tiermodells Microtus agrestis. Inaug. Dissertation, Humboldt-Universität zu Berlin.

    Google Scholar 

  • Sieger M, Pera F, Schwarzacher WG (1970). Genetic inactivity of heterochromatin and heteropycnosis in Microtus agrestis. Chromosoma 29: 349–364.

    Article  CAS  Google Scholar 

  • Singh A, Henschel S, Sperling K, Kalscheuer V, Neitzel H (2000). Differences in the meiotic pairing behavior of gonosomal heterochromatin between female and male Microtus agrestis: implications for the mechanism of heterochromatin amplification on the X and Y. Cytogenet Cell Genet 9: 253–260.

    Article  Google Scholar 

  • Soares MB, Schon E, Efstratiadis (1985). Rat LINE1: the origin and evolution of a family of long interspersed middle repetitive DNA elements. J Mol Evol 22: 117–133.

    CAS  Google Scholar 

  • Sperling K (1982). Cell cycle and chromosome cycle: morphological and functional aspects. In: Rao PN, Johnson RT, Sperling K, eds. Premature Chromosome condensation. New York: Academic Press, pp. 43–78.

    Chapter  Google Scholar 

  • Sperling K, Marcus M (1994). Mapping of genetic activity on mammalian chromosomes. Chromosomes Today 8: 169–178. G Allen and Unwin.

    Google Scholar 

  • Sperling K, Kerem BS, Goitein R, Kottsuch V, Cedar H, Marcus M (1985). DNase I sensitivity in facultative and constitutive heterochromatin. Chromosoma 93: 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Sperling K, Kalscheuer V, Neitzel H (1987). Transcriptional activity of constitutive heterochro- matin in the mammal Microtus agrestis (Rodentia, Cricetidae). Exp Cell Res 173: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Sperling K, Kalscheuer V, Kottusch-Geiseler V, Neitzel H (1989). Genetic activity of the constitutive heterochromatin in mammals. Chromosomes Today 10: 83–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sperling, K., Henschel, S., Schulze, I., Neitzel, H. (2004). Constitutive Heterochromatin of Microtus agrestis: Molecular Organization and Genetic Activity in Mitotic and Meiotic Cells. In: Schmid, M., Nanda, I. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1033-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1033-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5855-3

  • Online ISBN: 978-94-017-1033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics