Skip to main content

Isoprene and terpene biosynthesis

  • Chapter
Trace Gas Exchange in Forest Ecosystems

Part of the book series: Tree Physiology ((TREE,volume 3))

Abstract

A major part of the volatile organic compounds (VOC) in the atmosphere originates from isoprenoids emitted from plants and in particular from trees (Sharkey et al. 1991; Helas et al. 1997; Kesselmeier and Staudt 1999). The largest proportions of the terpenoids emitted from vegetation consist of the hemiterpene isoprene, various monoterpenes and, much less important, certain sesquiterpenes. These days great importance is placed on monoterpene and isoprene emission due to their impact on atmospheric chemistry and ozone formation (Trainer et al. 1987; Lerdau et al. 1997). In order to obtain better estimates of biogenic terpene emissions, it is essential to understand the biochemical and physiological background involved in terpene biosynthesis and emission by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adam K-P and Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry 48: 953–959

    CAS  Google Scholar 

  • Adam K-P, Thiel R, Zapp J and Becker H (1998) Involvement of the mevalonic acid pathway and the glyceraldehyde-pyruvate pathway in terpenoid biosynthesis of the liverworts Ricciocarpos natans and Conocephalum conicum. Arch Biochem Biophys 354: 181–187

    PubMed  CAS  Google Scholar 

  • Arigoni D, Cane DE, Shim JH, Croteau Rm and Wagschal K (1993) Monoterpene cyclization mechanisms and the use of natural abundance deuterium NMR — short cut or primrose path? Phytochemistry 32: 623–631

    CAS  Google Scholar 

  • Arigoni D, Eisenreich W, Latzel C, Sagner S, Radykewicz T, Zenk MH and Bacher A (1999). Dimethylallyl pyrophosphate is not the committed precursor of isopentenyl pyrophosphate during terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants. Proc Natl Acad Sci USA 96: 1309–1314

    PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A and Zenk MH (1997). Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94: 10600–10605

    PubMed  CAS  Google Scholar 

  • Bach Ti (1995) Some aspects of isoprenoid biosynthesis in plants - a review. Lipids 30: 191202

    Google Scholar 

  • Bach Ti and Lichtenthaler HK (1982) Mevinolin a highly specific inhibitor of microsomal 3hydroxy-3-methyl-glutaryl-coenzyme A reductase of radish plants. Z Naturforsch 37c: 4650

    Google Scholar 

  • Bach TJ and Lichtenthaler HK (1983) Inhibition of plant growth, sterol formation and pigment accumulation. Physiol Plant 59: 50–60

    CAS  Google Scholar 

  • Bach TJ, Boronat A, Campos N, Ferrer A and Vollack KU (1997) Mevalonate biosynthesis in plants. In: Bach Ti, Boronat A, Campos N, Ferrer A and Vollack KU (eds) Biochemistry and Function of Sterols, pp 135–150. CRC Press, Boca Raton, U.S.A.

    Google Scholar 

  • Baker B, Guenther A, Greenberg J, Goldstein A and Fall R (1999) Canopy fluxes of 2-methyl3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: field data and model comparison. J Geophys Res 104: 26107–26114

    CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G and Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95: 4126–4133

    PubMed  CAS  Google Scholar 

  • Bouvier F, d’Harlingue A, Suire C, Backhaus RA and Camara B (1998) Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol 117: 1423–1431

    PubMed  CAS  Google Scholar 

  • Cane DE (1998) Comprehensive Natural Product Chemistry Vol. 2 Isoprenoids including Carotenoids and Steroids. Pergamon, Oxford

    Google Scholar 

  • Chaykin S, Law J, Philipps AH and Bloch K (1958) Phosphorylated intermediates in the synthesis of squalene. Proc Natl Acad Sci USA 44: 998–1004

    PubMed  CAS  Google Scholar 

  • Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann Rev Plant Physiol Plant Mol Biol 46: 521–547

    CAS  Google Scholar 

  • Contin A, van der Heijden R, Lefeber AW and Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434: 413–416

    PubMed  CAS  Google Scholar 

  • Cseke L, Dudareva N and Pichersky E (1998) Structure and evolution of linalool synthase. Mol Biol Evol 15: 1491–1498

    PubMed  CAS  Google Scholar 

  • Cunilera N, Boronat A and Ferrer A (1997) The Arabidopsis thaliana Fpsl gene generates a novel messenger-RNA that encodes a mitochondrial farnesyl diphosphate synthase isoform. J Biol Chem 272: 15381–15388

    Google Scholar 

  • Delwiche CF and Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when ‘3CO2 is fed to intact leaves. Plant Cell Environ 16: 587–591

    CAS  Google Scholar 

  • Dewick PM (1999). The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep 16: 97

    CAS  Google Scholar 

  • Disch A and Rohmer M (1998) On the absence of the glyceraldehyde 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol Lett 168: 201–208

    PubMed  CAS  Google Scholar 

  • Disch A, Schwender J, Müller C, Lichtenthaler HK and Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333: 381–388

    PubMed  CAS  Google Scholar 

  • Eisenreich W, Menhard B, Hylands PJ, Zenk MH and Bacher A (1996) Studies on the biosynthesis of taxol: The taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci USA 93: 6431–6436

    Google Scholar 

  • EisenreichW, Sagner S, Zenk MH and Bacher A (1997) Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Lett 38: 3889–3892

    Google Scholar 

  • Ershov Y, Gantt RR, Cunningham FX and Gantt E (2000) Isopentenyl diphosphate isomerase deficiency in Synechocystis sp. strain PCC6803. FEBS Lett. 473: 337–340

    PubMed  CAS  Google Scholar 

  • Eschenmoser A, Ruzicka L, Jeger O and Arigoni D (1955) Zur Kenntnis der Triterpene. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Heiv Chim Acta 38: 1890–1904

    Google Scholar 

  • Fellermeier M, Kis K, Sagner S, Maier U, Bacher A and Zenk M (1999) Cell-free conversion of 1-deoxy-D-xylulose 5-phosphate and 2-C-methyl-D-erythritol 4-phosphate into n-carotene in higher plants and its inhibition by fosmidomycin. Tetrahedron Lett 40: 2743–2746

    CAS  Google Scholar 

  • Fisher AJ, Bahr BM, Greenberg JP and Fall R (2000) Enzymatic synthesis of methylbutenol from dimethylallyl diphosphate in needles of Pinus sabiniana. Arch Biochem Biophys 383: 128–134

    PubMed  CAS  Google Scholar 

  • Gershenzon J and Croteau RB (1993) Terpenoid biosynthesis: The basic pathway and formation of monoterpenes, sesquiterpenes and diterpenes. In: Gershenzon J and Croteau RB (eds) Lipid Metabolism in Plants, pp 339–388. CRC Press, Boca Raton, U.S.A.

    Google Scholar 

  • Goodwin T W (1965) Regulation of terpenoid biosynthesis in higher plants. In: Pridham JB and Swain T (eds) Biosynthetic Pathways in Higher Plants, pp 57–71. Academic Press, London, U.K.

    Google Scholar 

  • Harley P, Fridd-Stroud V, Greenberg J, Guenther A and Vasconcellos P (1998) Emission of 2methyl-3-buten-2-ol by pines: a potentially large natural source of reactive carbon to the atmosphere. J Geophys Res D 103: 25479–25486

    CAS  Google Scholar 

  • Harley PC, Monson RK and Lerdau MT (1999) Ecological, evolutionary aspects of isoprene emission from plants. Oecologia 118: 109–123

    Google Scholar 

  • Helas G, Slanina J and Steinbrecher R. (1997) Biogenic Volatile Organic Compounds in the Atmosphere. SPB Academic Publishing, Amsterdam, The Netherlands

    Google Scholar 

  • Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Lüttgen H, Sagner S, Fellermeier M, Eisenreich M, Zenk MH, Bacher A and Rohdich F (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-Derythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA 97: 2486–2490

    PubMed  CAS  Google Scholar 

  • Hewitt CN, Stewart H, Street RA and Scholefield PA (1997) Isoprene, monoterpene — emitting species survey 1997.

    Google Scholar 

  • Kellogg BA and Poulter CD (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1: 570–578

    PubMed  CAS  Google Scholar 

  • Kesselmeier J and Staudt M (1999) Biogenic volatile organic compounds (VOC): An overview on emission, physiology, ecology. J Atmos Chem 33: 23–88

    CAS  Google Scholar 

  • Knöss W, Reuter B and Zapp J (1997) Biosynthesis of the labdane diterpene marrubiin in Marubium vulgare via a non-mevalonate pathway. Biochem J 326: 449–454

    PubMed  Google Scholar 

  • Kreuzwieser J, Schnitzler J-P and Steinbrecher R (1999) Biosynthesis of organic compounds emitted by plants. Plant Biol 1: 149–159

    CAS  Google Scholar 

  • Kuzuyama T, Shimizu T, Takahashi S and Seto H (1998a) Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid synthesis. Tetrahedron Lett 39: 7913–7916

    CAS  Google Scholar 

  • Kuzuyama T, Takagi M, Kaneda K, Dairi T and Seto H (2000a) Formation of 4-(cytidine 5’diphospho)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol 4-phosphate by 2-Cmethyl-D-erythritol 4-phosphate cytidylyltransferase, a new enzyme in the nonmevalonate pathway. Tetrahedron Lett 41: 703–706

    CAS  Google Scholar 

  • Kuzuyama T, Takagi M, Kaneda K, Watanabe H, Dairi T and Seto H (2000b) Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5’-diphospho)-2-C-methyl-d-erythritol to its 2-phospho derivative by 4-(cytidine 5’-diphospho)-2-C-methyl-d-erythritol kinase. Tetrahedron Lett 41: 2925–2928

    CAS  Google Scholar 

  • Lange BM, Wildung MR, McCaskill D and Croteau R (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci USA 95: 2100–2104

    PubMed  CAS  Google Scholar 

  • Lange, B.M. and Croteau, R. (1999) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning, heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch Biochem Biophys 365: 170–174

    PubMed  CAS  Google Scholar 

  • Lerdau M and Keller M (1997) Controls on isoprene emission from trees in a subtropical dry forest. Plant Cell Environ 20: 569–578

    CAS  Google Scholar 

  • Lerdau M, Guenther A and Monson R (1997) Plant production, emission of volatile organic compounds. BioScience 47: 373–383

    Google Scholar 

  • Lesburg CA, Zhai GZ, Cane DE and Christianson DW (1997). Crystal-structure of pentalenene synthase — mechanistic insights on terpenoid cyclization reactions in biology. Science 277: 1820–1824

    PubMed  CAS  Google Scholar 

  • Li S-M, Hennig S and Heide L (1998) Shikonin: A geranyl diphosphate-derived plant hemiterpenoid formed via the mevalonate pathway. Tetrahedron Lett 39: 2721–2724

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Ann Rev Plant Physiol Plant Molec Biol 50: 47–65

    CAS  Google Scholar 

  • Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis: enzymes, genes, inhibitors. Biochem Soc Trans 28: 794–795

    Google Scholar 

  • Lichtenthaler HK, Schwender J, Seeman M and Rohmer M (1995). Carotenoid biosynthesis in green algae proceeds via a novel biosynthetic pathway. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, pp 115–118. Kluwer Academic Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • Lichtenthaler HK, Rohmer M and Schwender J (1997a) Two independent biochemical pathways for isopentenyl diphosphate, isoprenoid biosynthesis in higher plants. Physiol Plant 101: 643–652

    CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A and Rohmer M (1997b) Biosynthesis of isoprenoids in higher plant chloroplast proceeds via a mevalonate independent pathway. FEBS Lett 400: 271–274

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Müller C, Schwender J, Jomaa H and Zeidler J (1999) Specific inhibition of isoprenoid (carotene, chlorophyll, isoprene) biosynthesis in plants by fosmidomycin. Plant Physiol 105: Abstract No. 263

    Google Scholar 

  • Lichtenthaler HK, Zeidler J, Schwender J and Müller C (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test-system for new herbicides, drugs against pathogenic bacteria, the malaria parasite. Z. Naturforsch 55c: 305–313

    CAS  Google Scholar 

  • Litvak ME and Monson R (1998) Patterns of induced, constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114: 531–540

    Google Scholar 

  • Lois LM, Campos N, Rosa-Putra S, Danielsen K, Rohmer M and Boronat A (1998) Cloning, characterization of a gene from Escherichia coli encoding a tranketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, pyridoxol biosynthesis. Proc Natl Acad Sci USA 95: 2105–2110

    PubMed  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M and Sharkey TD (1996a) Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc Natl Acad Sci USA 93: 9966–9969

    PubMed  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Fabozzi C and Tricoli D (1996b) Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L. leaves by 13C labeling. Plant Physiol 110: 1317–1322

    PubMed  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Valentini R, De Lillis M, Csiky O and Seufert G (1998a) A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type, Quercus taxonomy. Oecologia 115: 302–305

    Google Scholar 

  • Loreto F, Förster A, Diirr M, Csiky O and Seufert G (1998b) On the monoterpene emission under heat stress, on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 21: 101–107

    CAS  Google Scholar 

  • Lüttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, Schuhr C A, Fellermeier M, Sagner S, Zenk MH, Bacher A and Eisenreich W (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2Cmethyl-D-erythritol. Proc Natl Acad Sci USA 97: 1062–1067

    PubMed  Google Scholar 

  • Lynen F, Eggerer H, Henning U and Kessel I (1958) Farnesylpyrophosphat, 3-Methyl-A3butenyl-l-pyrophosphat, die biologischen Vorstufen des Squalens. Angew. Chem. 70: 738–742

    Google Scholar 

  • Maier W, Schneider B and Strack D (1997) Biosynthesis of sesquiterpenoid cyclohexenone derivatives in mycorrhizal barley roots proceeds via the glyceraldehyde 3phosphate/pyruvate pathway. Tetrahedron Lett 39: 521–524

    Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M and León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9: 649–658

    PubMed  CAS  Google Scholar 

  • McCaskill D and Croteau R (1998) Some caveats for bioengeneering terpenoid metabolism in plants. Trends Biotechnol 16: 349–355

    CAS  Google Scholar 

  • McCaskill D and Croteau R (1999). Isopentenyl diphosphate is the terminal product of the deoxyxylulose-5-phosphate pathway for terpenoid biosynthesis in plants. Tetrahedron Lett 40: 653–656

    CAS  Google Scholar 

  • McGarvey DJ and Croteau R (1995) Terpenoid metabolism. Plant Cell 7: 1015–1026 Milborrow BV and Lee H-S (1998) Endogenous biosynthetic precursors of (+)-abscisic acid.

    Google Scholar 

  • VI. Carotenoids, ABA are formed by the ‘non-mevalonate’ triose-pyruvate pathway in chloroplasts. Austral J Plant Physiol 25: 507–512

    Google Scholar 

  • Ogura K and Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98: 1263–1276

    PubMed  CAS  Google Scholar 

  • Ohnuma S, Hirooka K, Ohto C and Nishino T (1997) Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase — 2 amino-acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem 272: 5192–5198

    PubMed  CAS  Google Scholar 

  • Piel J, Donath J, Bandemer K and Boland W (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants: Induced, constitutive emission of volatiles. Angew Chem Int Ed 37: 2478–2480

    Google Scholar 

  • Pio CA and Valente AA (1998) Atmospheric fluxes, concentrations of monoterpenes in resin-tapped pine forests. Atmos Environ 32: 683–692

    CAS  Google Scholar 

  • Ramos-Valdivia A-C, van der Heijden R and Verpoorte R (1997). Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry, function. Nat Prod Rep 14: 591–604

    PubMed  CAS  Google Scholar 

  • Rodriguez-Concepción M, Campos N, Lois LM, Maldonado C, Hoeffler JF, GrosdemangeBilliard C, Rohmer M and Boronat A (2000) Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate, dimethylallyl diphosphate in Escherichia coli. FEBS Lett. 473: 328–332

    PubMed  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz S, Kis K, Eisenreich W, Bacher A and Zenk MH (1999) Cytidine 5’-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96: 11758–11763

    PubMed  CAS  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH and Bacher A (2000) Biosynthesis of terpenoids: 4-Diphosphocytidyl-2C-methyl-D-erythritol synthase of Arabidopsis thaliana. Proc Natl Acad Sci USA 97: 6451–6456

    PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B and Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for early steps leading to isopentenyl diphosphate. Biochem J 295: 517–524

    PubMed  CAS  Google Scholar 

  • Ruzicka L, Eschenmoser A and Heusser H (1953) The isoprene rule, the biogenesis of terpenoic compounds. Experientia 9: 357–396

    PubMed  CAS  Google Scholar 

  • Sagner S, Latzel C, Eisenreich W, Bacher A and Zenk MH (1998) Differential incorporation of 1-deoxy-D-xylulose into monoterpenes, carotenoids in higher plants. Chem Commun 221–222

    Google Scholar 

  • Sanadze JA (1957) Emission of organic matters by leaves of Robinia pseudoacacia L. Soobsh Acad Nauk GSSR 19: 83

    Google Scholar 

  • Sanmiya K, Iwasaki T, Matsuoka M, Miyao M and Yamamoto N (1997) Cloning of a cDNA that encodes farnesyl diphosphate synthase, the blue-light induced expression of the corresponding gene in the leaves of rice plants. Biochim Biophys Acta 1350: 240–246

    PubMed  CAS  Google Scholar 

  • Schade GW, Goldstein AH, Gray DW and Lerdan MT (2000) Canopy, leaf level 2-methyl-3-butenol-2-ol fluxes from a ponderosa pine plantation. Atmos Environ 34: 3535–3544

    CAS  Google Scholar 

  • Her R Lehning A (1996). Characterization of an isoprene iso Schnitzler J-P, Arenz R, Steinbrecher and g p from leaves of Quercus Petraea (Matuschka) nthase lea () Liebl. Bot Acta 109: 216–221

    Google Scholar 

  • Schnitzler J-P, Lehning A and Steinbrecher R (1997) Seasonal pattern of isoprene synthase activity in Quercus robur leaves, its significance for modelling isoprene emission rates. Bot Acta 110: 240–243

    CAS  Google Scholar 

  • Schwender J, Lichtenthaler HK, Seeman, M and Rohmer M (1995) Biosynthesis of isoprenoid chains of chlorophylls, plastoquinone in Scenedesmus by a novel pathway. In: Mathis P (ed), Photosynthesis: from Light to Biosphere pp 1001–1004. Kluwer Academic Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK and Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophyll, plastoquinone) via a novel pyruvate/glycero-aldehyde-3-phosphate non-mevalonate pathway in the green alga Scenedesmus.Biochem J 316: 73–80

    CAS  Google Scholar 

  • Schwender J, Zeidler J, Gröner R, Müller C, Focke M, Braun S, Lichtenthaler FW and Lichtenthaler HK (1997) Incorporation of 1-deoxy-D-xylulose into isoprene, phytol by higher plants, algae. FEBS Lett 414: 129–134

    PubMed  CAS  Google Scholar 

  • Schwender J (1999) Die Mevalonat-unabhängige Isoprenoid-Biosynthese and deren Verbreitung in Pflanzen. Karlsr. Contrib. Plant Physiol. 35: 1–115

    Google Scholar 

  • Schwender J, Müller C, Zeidler J and Lichtenthaler HK (1999) Cloning, heterologous expression of a cDNA encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett. 455, 140–144

    PubMed  CAS  Google Scholar 

  • Sharkey TD (1996) Isoprene synthesis by plants, animals. Endeavour 20: 74–78

    PubMed  CAS  Google Scholar 

  • Sharkey TD and Loreto F (1993) Water stress, temperature„ light effects on the capacity for isoprene emission, photosynthesis of kudzu leaves. Oecologia 95: 328–333

    Google Scholar 

  • Sharkey TD and Singsaas EL (1995) Why plants emit isoprene. Nature 374: 769

    CAS  Google Scholar 

  • Sharkey TD, Holland EA and Mooney HA (1991) Trace Gas Emissions by Plants. Academic Press, Inc., San Diego, California, U.S.A.

    Google Scholar 

  • Silver GM and Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270: 13010–13016

    PubMed  CAS  Google Scholar 

  • Singsaas EL, Lerdau M, Winter K and Sharkey, TD (1997) Isoprene increases thermotolerance of isoprene-emitting leaves. Plant Physiol 115: 1413–1420

    PubMed  CAS  Google Scholar 

  • Sommer S, Severin K, Camara B and Heide L (1995) Intracellular localization of geranylpyrophosphate synthase from cell cultures of Lithospermum erythrorhizon. Phytochemistry 38: 623–627

    CAS  Google Scholar 

  • Sprenger GA, Schörken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S and Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of 1-deoxy-D-xylulose-5-phosphate precursor to isoprenoids, thiamin„ pyridoxol. Proc Natl Acad Sci USA 94: 12857–12862

    PubMed  CAS  Google Scholar 

  • Spurgeon SL and Porter JW (1981) Biosynthesis of isoprenoid compounds. John Wiley and Sons, New York, NY

    Google Scholar 

  • Starks CM, Back KW, Chapell J and Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277: 1815–1820

    PubMed  CAS  Google Scholar 

  • Staudt M and Bertin N (1998) Light, temperature dependence of the emission of cyclic, acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21: 385–395

    CAS  Google Scholar 

  • Steele CL, Katoh S, Bohlmann J and Croteau R (1998). Regulation of oleoresinosos in grand fir (Abies grandis) — differential transcriptional control of monoterpene, sesquiterpene, diterpene synthase genes in response to wounding. Plant Physiol 116: 1497–1504

    PubMed  CAS  Google Scholar 

  • Takagi M, Kuzuyama T, Kaneda K, Watanabe H, Dairi T and Seto H (2000) Studies on the nonmevalonate pathway: formation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate from 2-phospho-4-(cytidine 5’-diphospho)-2-C-methyl-d-erythritol. Tetrahedron Lett 41: 3395–3398

    CAS  Google Scholar 

  • Takahashi S, Kuzuyama T, Watanabe H and Seto H (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95: 9879–9884

    PubMed  CAS  Google Scholar 

  • Thiel R, Adam KP, Zapp J and Becker H (1997) Isopentenyl diphosphate biosynthesis in liverworts. Pharm Pharmacol Lett 7: 103–105

    CAS  Google Scholar 

  • Trainer M, Williams EJ, Parrish DD, Buhr MP, Allwine EJ, Westberg HH, Fehsenfeld FC and Liu SC (1987) Models, observations of the impact of natural hydrocarbons on rural ozone. Nature 329: 705–707

    CAS  Google Scholar 

  • Wallach 0 (1885) Zur Kenntnis der Terpene and ätherischen Ole. Liebigs Annal Chem 227: 277–302

    Google Scholar 

  • Wildermuth MC and, Fall R (1998) Biochemical characterization of stromal, thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116: 1111–1124

    CAS  Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ and Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active pseudomature form of this monoterpene cyclase, reveals the function of the amino-terminal arginine pair. Biochemistry 37: 12213–12220

    PubMed  CAS  Google Scholar 

  • Zeidler JG, Lichtenthaler HK, May HU and Lichtenthaler FW (1997) Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway? Z Naturforsch 52c: 15–23

    CAS  Google Scholar 

  • Zeidler JG and Lichtenthaler HK (1998) Two simple methods for measuring isoprene emission of leaves by UV-spectroscopy, GC-MS. Z Naturforsch 53c: 1087–1089

    CAS  Google Scholar 

  • Zeidler J, Schwender J, Müller C, Wiesner J, Weidemeyer C, Beck E, Jomaa H and Lichtenthaler HK (1998) Inhibition of the non-mevalonate 1-deoxy-D-xylulose-5phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z Naturforsch 53c: 980–986

    CAS  Google Scholar 

  • Zeidler J and Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Planta 213: 323–326

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lichtenthaler, H.K., Zeidler, J.G. (2002). Isoprene and terpene biosynthesis. In: Gasche, R., Papen, H., Rennenberg, H. (eds) Trace Gas Exchange in Forest Ecosystems. Tree Physiology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9856-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9856-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6214-7

  • Online ISBN: 978-94-015-9856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics