Skip to main content

Regulation of Isoprene and Monoterpene Emission

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms

Abstract

Isoprene and monoterpenes are synthesized and emitted into the atmosphere by many plant species, constitutively and/or after induction by environmental changes. Volatile isoprenoids are involved in defence against biotic and abiotic stresses. It is known that changes of the emission of volatile isoprenoids can be explained by the regulation of the activity of the corresponding synthases (isoprene or monoterpene synthases) or by substrate availability, but there are still gaps in the understanding of regulatory mechanisms controlling the emissions. Short-term variations in isoprene and monoterpene emissions depend basically on light and temperature, but control of monoterpene emission from plants that do not store terpenes is different from that of plants having specialized structures for their storage. Long-term and seasonal variations, however, are explained by developmental processes and by environmental factors, such as temperature and water stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    Article  PubMed  CAS  Google Scholar 

  • Affek HP, Yakir D (2003) Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow. Plant Physiol 131:1727–1736

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Huber DPW, Bohlmann J (2004) Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa x deltoides): cDNA cloning, functional characterisation, and patterns of gene expression of (−)- germacrene D synthase, PtdTPS1. Plant J 37:603–616

    Article  PubMed  CAS  Google Scholar 

  • Bernard-Dagan C, Pauly G, Marpeau A, Gleizes M, Carde JP, Baradat P (1982) Control and compartmentation of terpene biosynthesis in leaves of Pinus pinaster. Physiol Vég 20:775–795

    CAS  Google Scholar 

  • Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 107:456–462

    Article  Google Scholar 

  • Bertin N, Staudt M, Hansen U et al (1997) The BEMA-project: diurnal and seasonal course of monoterpene emissions by Quercus ilex L. under natural conditions – application of light and temperature algorithms. Atmos Environ 31:135–144

    Article  CAS  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    Article  PubMed  CAS  Google Scholar 

  • Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane DE (ed) Comprehensive natural product chemistry, isoprenoids including steroids and carotenoids, vol 2. Pergamon Press Inc., Tarrytown

    Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Suire C, d’Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus x euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann N, Schnitzler JP (2001) Influence of powdery mildew (Microsphaera alphitoides) on isoprene biosynthesis and emission of pedunculate oak (Quercus robur L.) leaves. J Appl Bot 75:91–96

    Google Scholar 

  • Brüggemann N, Schnitzler JP (2002) Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings. Plant Biol 4:456–463

    Article  Google Scholar 

  • Buckley PT (2001) Isoprene emissions from a Florida scrub oak species grown in ambient and elevated carbon dioxide. Atmos Environ 35:631–634

    Article  CAS  Google Scholar 

  • Centritto M, Nascetti P, Petrilli L, Raschi A, Loreto F (2004) Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment. Plant Cell Environ 27:403–412

    Article  CAS  Google Scholar 

  • Centritto M, Brilli F, Fodale R, Loreto F (2011) Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiol 31:275–286

    Article  PubMed  CAS  Google Scholar 

  • Chameides WL, Lindsay RW, Richardson J, Kiang CS (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241:1473–1475

    Article  PubMed  CAS  Google Scholar 

  • Ciccioli P, Fabozzi C, Brancaleoni E et al (1997) Use of isoprene algorithm for predicting the monoterpene emission from the Mediterranean holm oak Quercus ilex L.: performance and limits of this approach. J Geophys Res 102:23319–23328

    Article  CAS  Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, Brachetti A, Marta S (2002) Daily and seasonal variations of monoterpene emissions from an evergreen oak (Quercus ilex L.) forest of southern Europe. In: Raes F, Angeletti G, Hjorth J (eds) A changing atmosphere: Proceedings of the 8th European symposium on the physico-chemical behaviour of atmospheric pollutants. European Commission, DG Research and Joint Research Center, Ispra, 5 pp

    Google Scholar 

  • Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Global Change Biol 5:255–267

    Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Article  CAS  Google Scholar 

  • Delaney ME, Owen WJ, Rogers LJ (1977) Accumulation of sugars and polysaccharide accompanying an inhibition of the light reaction in photosynthesis. J Exp Bot 28:1153–1162

    Article  CAS  Google Scholar 

  • Delfine S, Csiky O, Seufert G, Loreto F (2000) Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 146: 27–36

    Article  CAS  Google Scholar 

  • Delwiche CF, Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591

    Article  CAS  Google Scholar 

  • Di Carlo P, Brune WH, Martinez M et al (2004) Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs. Science 304:722–725

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    PubMed  CAS  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    Article  PubMed  CAS  Google Scholar 

  • Evans RC, Tingey DT, Gumpertz ML (1985) Interspecies variation in terpenoid emissions from engelmann and sitka spruce seedlings. For Sci 31:132–142

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic, London

    Google Scholar 

  • Fall R, Wildermuth MC (1998) Isoprene synthase: from biochemical mechanism to emission algorithm. J Geophys Res 103:25599–25609

    Article  CAS  Google Scholar 

  • Fang CW, Monson RK, Cowling EB (1996) Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua L.) seedlings exposed to repeated cycles of water stress. Tree Physiol 16: 441–446

    Article  PubMed  Google Scholar 

  • Fares S, Oksanen E, Lännenpää M, Julkunen-Tiito R, Loreto F (2010) Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. Photosynth Res 104:61–74

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fischbach RJ, Zimmer I, Steinbrecher R, Pfichner A, Schnitzler JP (2000) Monoterpene synthase activities in leaves of Picea abies (L.) Karst. and Quercus ilex L. Phytochemistry 54:257–265

    Article  PubMed  CAS  Google Scholar 

  • Fischbach R, Staudt M, Zimmer I, Rambal S, Schnitzler JP (2002) Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex L. Physiol Plant 114:354–360

    Article  PubMed  CAS  Google Scholar 

  • Fisher AJ, Rosenstiel TN, Shirk MC, Fall R (2001) Nonradioactive assay for cellular dimethylallyl diphosphate. Anal Biochem 292:272–279

    Article  PubMed  CAS  Google Scholar 

  • Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler J-P, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697. doi:10.1111/j.1365-313X.2008.03538.x

    Article  PubMed  CAS  Google Scholar 

  • Fuentes JD, Wang D (1999) On the seasonality of isoprene emission from a mixed temperate forest. Ecol Appl 9:1118–1131

    Article  Google Scholar 

  • Fuentes JD, Wang D, Gu L (1999) Seasonal variations in isoprene emissions from a boreal aspen forest. J Appl Meteorol 38:855–869

    Article  Google Scholar 

  • Funk JL, Mak JE, Lerdau MT (2004) Stress-induced changes in carbon sources for isoprene production in Populus deltoides. Plant Cell Environ 27:747–755

    Article  CAS  Google Scholar 

  • Funk JL, Jones CG, Gray DW, Throop HL, Hyatt LA, Lerdau MT (2005) Variation in isoprene emission from Quercus rubra: sources, causes, and consequences for estimating fluxes. J Geophys Res 110: D04301. doi:10.1029/2004JD005229

    Article  CAS  Google Scholar 

  • Geron C, Guenther A, Sharkey TD, Arnts RR (2000) Temporal variability in the basal isoprene emission factor. Tree Physiol 20:799–805

    Article  PubMed  Google Scholar 

  • Goldstein AH, Goulden ML, Munger JW, Wofsy SC, Geron CD (1998) Seasonal course of isoprene emissions from a midlatitude deciduous forest. J Geophys Res 103:31045–31056

    Article  CAS  Google Scholar 

  • Gould MN (1997) Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect 105:977–979

    PubMed  CAS  Google Scholar 

  • Grinspoon J, Bowman WD, Fall R (1991) Delayed onset of isoprene emission in developing velvet bean (Mucuna sp.) leaves. Plant Physiol 97:170–174

    Article  PubMed  CAS  Google Scholar 

  • Guenther AB, Monson RK, Fall R (1991) Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. J Geophys Res 96:10799–10808

    Article  Google Scholar 

  • Guenther A, Zimmerman P, Wildermuth M (1994) Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos Environ 28:1197–1210

    Article  CAS  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  • Guidolotti G, Calfapietra C, Loreto F (2011) The relationship between isoprene emission, CO2 assimilation and water use efficiency across a range of poplar genotypes. Physiol Plant. doi:10.1111/j.1399-3054.2011. 01463.x

  • Hakola H, Rinne J, Laurila T (1998) The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula). Atmos Environ 32:1825–1833

    Article  CAS  Google Scholar 

  • Hakola H, Laurila T, Lindfors V, Hellén H, Gaman A, Rinne J (2001) Variation of the VOC emission rates of birch species during the growing season. Boreal Environ Res 6:237–249

    CAS  Google Scholar 

  • Hakola H, Tarvainen V, Laurila T, Hiltunen V, Hellen H, Keronen P (2003) Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos Environ 37:1623–1634

    Article  CAS  Google Scholar 

  • Hansted L, Jakobsen HB, Olsen CE (1994) Influence of temperature on the rhythmic emission of volatiles from Ribes nigrum flowers in situ. Plant Cell Environ 17:1069–1072

    Article  CAS  Google Scholar 

  • Harley PC, Guenther AB, Zimmerman PR (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol 16: 25–32

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann T, Odum JR, Bowman F et al (1997) Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem 26:189–222

    Article  CAS  Google Scholar 

  • Janson R (1993) Monoterpene emission of Scots pine and Norwegian spruce. J Geophys Res 98:2839–2850

    Article  Google Scholar 

  • Karl T, Fall R, Rosenstiel TN et al (2002) On-line analysis of the 13CO2 labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors. Planta 215:894–905

    Article  PubMed  CAS  Google Scholar 

  • Kempf K, Allwine E, Westberg H, Claiborn C, Lamb B (1996) Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods. Atmos Environ 30:381–1389

    Article  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Graus M, Wisthaler A et al (2002) Xylem-transported glucose as additional carbon source for leaf isoprene formation in Quercus robur. New Phytol 156:171–178

    Article  CAS  Google Scholar 

  • Kuhn U, Rottenberger S, Biesenthal T et al (2004) Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development. Plant Cell Environ 27:1469–1485

    Article  CAS  Google Scholar 

  • Kuzma J, Fall R (1993) Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol 101:435–440

    PubMed  CAS  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  Google Scholar 

  • Lehning A, Zimmer I, Steinbrecher R, Brüggemann N, Schnitzler JP (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant Cell Environ 22:495–504

    Article  CAS  Google Scholar 

  • Lehning A, Zimmer W, Zimmer I, Schnitzler JP (2001) Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys Res 106:3157–3166

    Article  CAS  Google Scholar 

  • Lerdau M (1991) Plant function and biogenic emission. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emission by plants. Academic, San Diego

    Google Scholar 

  • Lerdau M, Keller M (1997) Controls on isoprene emission from trees in a subtropical dry forest. Plant Cell Environ 20:569–578

    Article  CAS  Google Scholar 

  • Lerdau M, Matson P, Fall R, Monson R (1995) Ecological controls over monoterpene emissions from Douglas-Fir (Pseudotsuga menziesii). Ecology 76:2640–2647

    Article  Google Scholar 

  • Litvak ME, Loreto F, Harley PC, Sharkey TD, Monson RK (1996) The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant Cell Environ 19: 549–559

    Article  CAS  Google Scholar 

  • Llusià J, Peñuelas J (2000) Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am J Bot 87: 133–140

    Article  PubMed  Google Scholar 

  • Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler JP (2007) Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol 143:540–551

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29: 1820–1828

    Google Scholar 

  • Loreto F, Centritto M, Barta C, Calfapietra C, Fares S, Monson RK (2007) The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant Cell Environ 30: 662–669

    Google Scholar 

  • Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123:1605–1610

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Sharkey TD (1990) A gas exchange study of photosynthesis and isoprene emission in red oak (Quercus rubra L.). Planta 182:523–531

    Article  CAS  Google Scholar 

  • Loreto F, Sharkey TD (1993) On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta 189: 420–424

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Tricoli D (1996a) Influence of environmental-factors and air composition on the emission of α-pinene from Quercus ilex leaves. Plant Physiol 110:267–275

    PubMed  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Tricoli D (1996b) Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex leaves by 13C labeling. Plant Physiol 110:1317–1322

    PubMed  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Cucinato A, Frattoni M (1998) Measurement of isoprenoid content in leaves of Mediterranean Quercus spp. by a novel and sensitive method and estimation of the isoprenoid partition between liquid and gas phase inside the leaves. Plant Sci 136:25–30

    Article  CAS  Google Scholar 

  • Loreto F, Nascetti P, Graverini A, Manozzi M (2000) Emission and content of monoterpenes in intact and wounded needles of the Mediterranean Pine Pinus pinea. Funct Ecol 14:589–596

    Article  Google Scholar 

  • Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001a) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler JP et al (2001b) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Global Change Biol 7:709–717

    Article  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler JP (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40:S138–S151

    Article  CAS  Google Scholar 

  • Mayrhofer S, Heizmann U, Magel E et al (2004) Carbon balance in the leaves of young poplar trees. Plant Biol 6:730–745

    Article  PubMed  CAS  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler JP (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiol 139:474–484

    Article  PubMed  CAS  Google Scholar 

  • Melle C, Steinbrecher R, Hauff K, Schnitzler P (1996) Characterisation of monoterpene cyclase activities in needles of Norway spruce seedlings. In: Borrell PM, Borrell P, Cvitsh T, Kelly K, Seiler W (eds) Proceedings of EUROTRAC symposium ’96. Computational Mechanics Publications, Southampton

    Google Scholar 

  • Mgaloblishvili MP, Khetsuriana ND, Kalandaze AN, Sanadze GA (1979) Localization of isoprene biosynthesis in poplar leaf chloroplasts. Sov Plant Physiol 26:837–842

    Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves: the influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Harley PC, Litvak ME et al (1994) Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99:260–270

    Article  Google Scholar 

  • Monson R, Lerdau M, Sharkey T, Schimel D, Fall R (1995) Biological aspects of constructing biological hydrocarbon emission inventories. Atmos Environ 29:2989–3002

    Article  CAS  Google Scholar 

  • Mulder-Krieger T, Verpoorte R, Svendse A, Scheffer J (1988) Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant Cell Tissue Organ Cult 13:85–114

    Article  CAS  Google Scholar 

  • Niinemets U, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335

    Article  CAS  Google Scholar 

  • Niinemets U, Seufert G, Steinbrecher R, Tenhunen JD (2002) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen 25 Quercus species. New Phytol 153: 257–275

    Article  CAS  Google Scholar 

  • Nogués I, Brilli F, Loreto F (2006) Dimethylallyl diphosphate (DMADP) and geranyl-diphosphate (GDP) pools of plant species characterized by different isoprenoid emissions. Plant Physiol 141:721–730

    Article  PubMed  CAS  Google Scholar 

  • Núñez L, Plaza J, Pérez-Pastor R et al (2002) Corrigendum to “high water vapour pressure deficit influence on Quercus ilex and Pinus pinea field monoterpene emission in the central Iberian Peninsula (Spain)”. Atmos Environ 36:4441–4452

    Article  Google Scholar 

  • Owen SM, Harley P, Guenther AB, Hewitt CN (2002) Light dependency of VOC emissions from selected Mediterranean plant species. Atmos Environ 36:3147–3159

    Article  CAS  Google Scholar 

  • Pegoraro E, Rey A, Bobich EG et al (2004) Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought. Funct Plant Biol 31:1137–1147

    Article  CAS  Google Scholar 

  • Pegoraro E, Abrell L, Van Haren J et al (2005) The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm. Glob Chang Biol 11:1234–1246

    Article  Google Scholar 

  • Pétron G, Harley P, Greenberg J, Guenther A (2001) Seasonal temperature variations influence isoprene emission. Atmos Environ 28:1707–1710

    Google Scholar 

  • Rapparini F, Baraldi R, Facini O (2001) Seasonal variation of monoterpene emission from Malus domestica and Prunus avium. Phytochemistry 57:681–687

    Article  PubMed  CAS  Google Scholar 

  • Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27: 381–392

    Article  CAS  Google Scholar 

  • Rasmussen RA, Went FW (1965) Volatile organic material of plant origin in the atmosphere. Proc Natl Acad Sci USA 53:215–220

    Article  PubMed  CAS  Google Scholar 

  • Rasulov B, Copolovici L, Laisk A, Niinemets U (2009) Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. Plant Physiol 149:1609–1618

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Fisher AJ, Fall R, Monson RK (2002) Differential accumulation of dimethyallyl diphosphate in leaves and needles of isoprene and methylbuthenol-emitting and non-emitting species. Plant Physiol 129:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Ebbets AL, Khatri WC, Fall R, Monson RK (2004) Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate. Plant Biol 6:12–21

    Article  PubMed  CAS  Google Scholar 

  • Sanadze GA (1969) Light-dependent excretion of molecular isoprene. Prog Photosynth Res 2:701–706

    CAS  Google Scholar 

  • Schnitzler JP, Arenz R, Steinbrecher R, Lehning A (1996) Characterization of an isoprene synthase from leaves of Quercus petraea (Mattuschka) Liebl. Bot Acta 109:216–221

    CAS  Google Scholar 

  • Schnitzler JP, Graus M, Kreuzwieser J et al (2004) Contribution of different carbon sources for isoprene emitted from poplar leaves. Plant Physiol 135:152–160

    Article  PubMed  CAS  Google Scholar 

  • Scholefield PA, Kieron J, Doick KJ et al (2004) Impact of rising CO2 on VOC emissions: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:381–392

    Article  Google Scholar 

  • Schuh G, Heiden AC, Hoffman T et al (1997) Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. J Atmos Chem 27:291–318

    Article  CAS  Google Scholar 

  • Schürmann W, Ziegler H, Kotzias D, Schönwitz R, Steinbrecher R (1993) Emission of biosynthesized monoterpenes from needles of Norway spruce. Naturwissenschaften 80:276–278

    Article  Google Scholar 

  • Schwender J, Zeidler J, Gröner R et al (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    Article  PubMed  CAS  Google Scholar 

  • Seufert G, Kotzias D, Spartà C, Versino B (1995) Volatile organics in Mediterranean shrubs and their potential role in a changing environment. Ecol Stud 177:343–365

    Article  Google Scholar 

  • Shao M, Czapiewski KV, Heiden AC et al (2001) Volatile organic compound emissions from Scots Pine: mechanisms and description by algorithms. J Geophys Res 106:20483–20491

    Article  CAS  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Loreto F, Delwiche CF (1991) High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14:333–338

    Article  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL, Lerdau MT, Geron CD (1999) Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol Appl 9:1132–1137

    Article  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Silver GM, Fall R (1991) Enzymatic synthesis of isoprene from dimethylallyl diphosphate in Aspen leaf extracts. Plant Physiol 97:1588–1591

    Article  PubMed  CAS  Google Scholar 

  • Silver GM, Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016

    Article  PubMed  CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ 21:1181–1188

    Article  CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (2000) The effects of high temperature on isoprene synthesis in oak leaves. Plant Cell Environ 23:751–757

    Article  CAS  Google Scholar 

  • Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413–1420

    PubMed  CAS  Google Scholar 

  • Staudt M, Bertin N (1998) Light and temperature dependency of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21:385–395

    Article  CAS  Google Scholar 

  • Staudt M, Seufert G (1995) Light-dependent emissions of monoterpenes by Holm oak (Quercus ilex L.). Naturwissenschaften 82:89–92

    Article  CAS  Google Scholar 

  • Staudt M, Bertin N, Hansen U et al (1997) Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos Environ 31:145–156

    Article  CAS  Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol 21:437–445

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecher R (1989) Gehalt und Emission von Monoterpenen in oberirdischen Organen von Picea abies (L.) Karst., Ph.D. thesis, Universität München

    Google Scholar 

  • Steinbrecher R, Ziegler H (1997) Monoterpene production by plants. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees—contributions to modern tree physiology. Backhuys Publishers, Leiden

    Google Scholar 

  • Street R, Owen S, Duckam S, Boissard C, Hewitt C (1997) The BEMA project: effect of habitat and age on variations in emissions from Quercus ilex and Pinus pinea. Atmos Environ 31:89–100

    Article  CAS  Google Scholar 

  • Tholl D, Croteau R, Gershenzon J (2001) Partial purification and characterization of the short-chain prenyltransferases, geranyl diphosphate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir). Arch Biochem Biophys 386:233–242

    Article  PubMed  CAS  Google Scholar 

  • Tingey DT, Manning M, Grothaus LC, Burns WF (1979) The influence of light and temperature on isoprene emission rates from live oak. Physiol Plant 47:112–118

    Article  CAS  Google Scholar 

  • Tingey DT, Turner DP, Weber JA (1991) Factors controlling the emission of monoterpenes and other volatiles compounds. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emission by plants. Academic, San Diego

    Google Scholar 

  • Tognetti R, Johnson JD, Michelozzi M, Raschi A (1998) Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2. Environ Exp Bot 39:233–245

    Article  CAS  Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    PubMed  CAS  Google Scholar 

  • Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F (2005) Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol 25:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Tsonev T, Barta C et al (2009) BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environ Pollut 157:2629–2637

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto L (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol 157: 905–916

    Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for isoprenoids in plant abiotic stress. Nature Chem Biol 5:283–291

    Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28:898–905

    Article  CAS  Google Scholar 

  • Wildermuth MC, Fall R (1996) Light-dependent isoprene emission – characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts. Plant Physiol 112:171–182

    PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Owen SM, Possell M et al (2006) Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J 47:960–968

    Article  PubMed  CAS  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W, Kunhnemann F (2004) Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiol 135:1939–1945

    Google Scholar 

  • Zeidler J, Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Planta 213:323–326

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Nogués .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nogués, I., Loreto, F. (2012). Regulation of Isoprene and Monoterpene Emission. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_10

Download citation

Publish with us

Policies and ethics