Skip to main content

Actin and Myosin VIII in Developing Root Apex Cells

Development- and tissue-specific distributions with possible relevance for diverse root cell functions

  • Chapter
Actin: A Dynamic Framework for Multiple Plant Cell Functions

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 89))

Abstract

Root apices represent an ideal model object for studies on plant cell growth and development. We have exploited this opportunity for detailed analysis of the actin-based cytoskeleton in cells of various root tissues throughout their cellular development. During mitosis, cells re-distribute their actin filaments (AFs) and myosin VIII molecules from the cytoplasm to the cell periphery where they accumulate at putative AF-organizing centres (AFOCs) facing the spindle poles. Postmitotic root cap columella cells differentiate first into gravity-sensing statocytes which are unique among postmitotic root cells due to the lack of any distinct cables of AFs. Later, statocytes, as well as peripheral cap cells, transform into secretory cells equipped with dense AF networks distributed throughout their cytoplasm. They retain abundant AFs after being shed from the root. Intriguingly, however, all root cap cells lack myosin VIII at their periphery. By contrast, all postmitotic cells of the root body, as they traverse the transition zone, show myosin VIII localized at their periphery. Myosin VIII localizes especially at the plasmodesmata in the non-growing cross walls. In cells of the transition zone, unique AF bundles develop which are proposed to participate in the onset of rapid cell elongation. These AF bundles are initiated at the nuclear peripheries and are organized via myosin VIII-enriched cross-walls, these two sites obviously act as the major AFOCs of postmitotic root-body cells. Treatment of roots with latrunculin B reveals that dynamic AFs are essential for both vacuome-driven cell elongation and root hair formation. In the transition zone and elongation region, cells of the inner cortex localize plant myosin VIII molecules abundantly at their pit-fields. These distinctive subcellular sites, like cross-walls and root hair apices, represent powerful AFOCs capable of organizing abundant AFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asada T and Collings D (1997) Molecular motors in higher plants. Trends Plant Sci 2: 29–37

    Article  Google Scholar 

  • Baluška F and Hasenstein KH (1997) Root cytoskeleton: Its role in perception of and response to gravity. Planta 203: S69-S78

    Article  PubMed  Google Scholar 

  • Baluška F, Parker JS and Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.). J Cell Sci 103: 191–200

    Google Scholar 

  • Baluška F, Barlow PW and Kubica Š (1994) Importance of the post-mitotic ‘isodiametric’ growth (PIG) region for growth and development of roots. Plant and Soil 167: 31–42

    Article  Google Scholar 

  • Baluška F, Volkmann D and Barlow PW (1996a) Specialized zones of development in roots: View from the cellular level. Plant Physiol 112:3–4

    PubMed  Google Scholar 

  • Baluška F, Hauskrecht M, Barlow PW and Sievers A (1996b) Gravitropism of the primary root of maize: A complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton. Planta 198: 310–318

    Article  PubMed  Google Scholar 

  • Baluška F, Kreibaum A, Vitha S, Parker JS, Barlow PW and Sievers A (1997a) Central root cap cells are depleted of endoplasmic microtubules and actin microfilament bundles: Implications for their role as gravity-sensing statocytes. Protoplasma 196: 212–223

    Article  PubMed  Google Scholar 

  • Baluška F, Vitha S, Barlow PW and Volkmann D (1997b) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: A major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72: 113–121

    PubMed  Google Scholar 

  • Baluška F, Barlow PW, Lichtscheidl IK and Volkmann D (1998) The plant cell body: A cytoskeletal tool for cellular development and morphogenesis. Protoplasma 202: 1–10

    Article  Google Scholar 

  • Baluška F, Volkmann D and Barlow PW (2000) Actin-based domains of ‘cell periphery complex’ and their associations with polarized ‘cell bodies’ in higher plants. Plant Biol, in press

    Google Scholar 

  • Barlow PW (1989) Anatomical controls of root growth. Aspects Appl Biol 22: 57–66

    Google Scholar 

  • Barlow PW (1994) Cell divisions in meristems and their contribution to organogenesis and plant form. In: Shape and Form in Plants and Fungi. Ingram DS and Hudson A (eds), London: Academic Press, pp 169–193

    Google Scholar 

  • Barlow PW and Baluška F (2000) Cytoskeletal perspectives on root growth and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 51: 289–322

    Article  PubMed  CAS  Google Scholar 

  • Barties JR (2000) Parallel actin bundles and their multiple actin-bundling proteins. Curr Opin Cell Biol 12: 72–78

    Article  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A and Hawes C (1998) Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Borisy GG and Svitkina TM (2000) Actin machinery: Pushing the envelope. Curr Opin Cell Biol 12: 104–112

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Baluška F, von Witsch M and Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate (PIP2) in growing and maturing root hairs. Planta 209: 435–443

    Article  PubMed  CAS  Google Scholar 

  • Bret-Harte MS and Silk WK (1994) Nonvascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root tip of Zea mays L. Plant Physiol 105: 19–33

    PubMed  CAS  Google Scholar 

  • Cantiello HF and Prat AG (1996) Role of actin filament organization in ion channel activity and cell volume regulation. In: Membrane Protein-Cytoskeleton Interactions. Nelson WJ (ed), San Diego: Academic Press, pp 373–396

    Chapter  Google Scholar 

  • Ding JP and Pickard BG (1993) Mechanosensory calcium selective channels in onion epidermis. Plant J 3: 83–110

    Article  CAS  Google Scholar 

  • Defacque H, Egeberg M, Habermann A, Diakonova M, Roy C, Mangeat P, Voelter W, Marriott G, Pfannstiel J, Faulstich H and Griffiths G (2000) Involvement of ezrin/moezin in de novo actin assembly on phagosomal membranes. EMBO J 19: 199–212

    Article  PubMed  CAS  Google Scholar 

  • Evangelista M, Klebl BM, Tong AHY, Webb BA, Leeuw T, Leberer E, Whiteway M, Thomas DY and Boone C (2000) A role for myosin-I in actin assembly through interactions with Vrpl, Beelp, and the Arp2/3 complex. J Cell Biol 148: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Frazier JA and Field CM (1997) Actin cytoskeleton: Are FH proteins local organizers? Curr Biol 7:R414-R417

    Article  PubMed  CAS  Google Scholar 

  • Garrill A, Findlay GP and Tyerman SD (1996) Mechanosensitive ion channels. In: Membranes: Specialized Functions in Plants. Smallwood M, Knox JP and Bowles DJ (eds), Oxford: BIOS Scientific Publishers, pp 247–260

    Google Scholar 

  • Gibbon BC, Kovar DR and Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11: 2349–2364

    PubMed  CAS  Google Scholar 

  • Glogauer M, Arora P, Chou D, Janmey PA, Downey GP and McCulloch CAG (1998) The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J Biol Chem 273: 1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Goodson H, Anderson B, Warrick H, Pon L and Spudich J (1996) Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): Myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133: 1277–1291

    Article  PubMed  CAS  Google Scholar 

  • Hahne G and Hoffman F (1984) The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol 33: 175–179

    PubMed  CAS  Google Scholar 

  • Hawes MC, Brigham LA, Wen F, Woo HH and Zhu Y (1998) Function of root border cells in plant health: Pioneers in the rhizosphere. Annu Rev Phytopathol 36: 311–327

    Article  PubMed  CAS  Google Scholar 

  • Heintzelman MB and Mooseker MS (1992) Assembly of the intestinal brush border cytoskeleton. Curr Top Dev Biol 26: 93–122

    Article  PubMed  CAS  Google Scholar 

  • Higashi-Fujime S (1991) Reconstitution of active movement in vitro based on the actin-myosin interaction. Int Rev Cytol 125: 95–138

    Article  PubMed  CAS  Google Scholar 

  • Hwang J-U, Suh S, Yi H, Kim J and Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol 115: 335–342

    PubMed  CAS  Google Scholar 

  • Ishikawa H and Evans ML (1992) Induction of curvature in maize roots by calcium or by thigmostimulation. Role of the postmitotic isodiametric growth zone. Plant Physiol 100: 762–768

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H and Evans ML (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102: 1203–1210

    PubMed  CAS  Google Scholar 

  • Ivanov VB and Maximov VN (1999) The change in the relative rate of cell elongation along the root meristem and the apical region of the elongation zone. Russ J Plant Physiol 46: 73–82

    CAS  Google Scholar 

  • Kachar B and Reese TS (1988) The mechanism of cytoplasmic streaming in Characean algal cells: Sliding of endoplasmic reticulum along actin filaments. J Cell Biol 106: 1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Klahre U and Chua N-H (1999) The Arabidopsis ACTIN-RELATED PROTEIN2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Biol 41: 65–73

    Article  PubMed  CAS  Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D and Chua N-H (2000) Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122: 35–47

    Article  PubMed  CAS  Google Scholar 

  • Knebel W, Quader H and Schnepf E (1990) Mobile and immobile endoplasmic reticulum in onion bulb epidermis cells: Short- and long-term observations with a confocal laser scanning microscope. Eur J Cell Biol 52: 328–340

    PubMed  CAS  Google Scholar 

  • Knight A and Kendrick-Jones J (1993) A myosin-like protein from a higher plant. J Mol Biol 231: 148–154

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Okagaki T, Kohama K and Shimmen T (1991) Pollen tube extract supports the movement of actin filaments in vitro. Protoplasma 161: 75–77

    Article  Google Scholar 

  • Kollmeier M, Felle HH and Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122: 945–956

    Article  PubMed  CAS  Google Scholar 

  • Kubica Š, Baluška F and Hauskrecht M (1991) Elemental growth rate and rRNA transcript maturation exhibit the same pattern in individual tissues of the maize root apex. Ann Bot 68: 387–391

    CAS  Google Scholar 

  • Lechler T, Shevchenko A, Shevchenko A and Li R (2000) Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148: 363–373

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Ishihara A, Oxford G, Johnson B and Jacobson K (1999) Regulation of cell movements is mediated by stretch-activated calcium channels. Nature 400: 382–386

    Article  PubMed  CAS  Google Scholar 

  • Lichtscheidl IK, Lancelle SA and Hepler PK (1990) Actin-endoplasmic reticulum complexes in Drosera. Their structural relationship with the plasmalemma, nucleus, and organelles in cells prepared by high pressure freezing. Protoplasma 155: 116–126

    Article  Google Scholar 

  • Liebe S and Menzel D (1995) Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells. Biol Cell 85: 207–222

    Article  PubMed  CAS  Google Scholar 

  • Liu Q-S and Berg DK (1999) Actin filaments and the opposing actions of CaM kinase II and calcineurin in regulation of a7-containing nicotinic receptors on chick ciliary ganglion neurons. J Neurosci 19: 10280–10288

    PubMed  CAS  Google Scholar 

  • Loisel TP, Boujemaa R, Pantaloni D and Carlier ME (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401: 613–616

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM and Gould KL (1999) The Arp2/3 complex: A multifunctional actin organizer. Curr Opin Cell Biol 11:117–121

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM (2000) The tails of two myosins. J Cell Biol 148: 219–221

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM and Cooper JA (1999) Bare bones of the cytoskeleton. Nature 401: 542–543

    Article  PubMed  CAS  Google Scholar 

  • Masuda Y, Takagi S and Nagai R (1991) Protease-sensitive anchoring of microfilament bundles provides tracks for cytoplasmic streaming in Vallisneria. Protoplasma 162: 151–159

    Article  CAS  Google Scholar 

  • Mews M, Baluška F and Volkmann D (1996) Tissue- and development-specific distribution of PSTAIR-proteins in cells of control and wounded maize root apices. J Exp Bot 47: 819–829

    Article  CAS  Google Scholar 

  • Miki H, Miura K and Takenawa T (1996) N-WASP, a novel actin-depolymerizing protein regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15: 5326–5335

    PubMed  Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T and Emons AMC (1999) The role of actin in root hair morphogenesis: Studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17: 141–154

    Article  CAS  Google Scholar 

  • Mollenhauer HH and Morré DJ (1976) Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Moreau V and Way M (1998) Cdc42 is required for membrane dependent actin polymerization in vitro. FEBS Lett 427: 353–356

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB and Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121: 1127–1141

    Article  PubMed  CAS  Google Scholar 

  • Olyslaegers G and Verbelen J-P (1998) Improved staining of F-actin and co-localization of mitochondria in plant cells. J Microsc 192: 73–77

    Article  CAS  Google Scholar 

  • Ovečka M, Baluška F, Nadubinská M and Volkmann D (2000) Actomyosin and exocytosis inhibitors alter root hair morphology in Poa annua L. Biologia, in press

    Google Scholar 

  • Prat AG, Holtzman EJ, Brown D, Cunningham CC, Reisin IL, Kleyman TR, McLaughlin M, Jackson GR, Lydon J and Cantiello HF (1996) Renal epithelial protein (Apx) is an actin cytoskeleton-regulated Na+ channel. J Biol Chem 271:18045–18053

    Article  PubMed  CAS  Google Scholar 

  • Ramahaleo T, Alexandre J and Lassalles J-P (1996) Stretch activated channels in plant cells. A new model for osmoelastic coupling. Plant Physiol Biochem 34: 327–334

    Google Scholar 

  • Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP and Meyer T (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton — plasma membrane adhesion. Cell 100: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluška F, Volkmann D and Kendrick-Jones J (1997) Characterization of a plant myosin. Mol Biol Cell 7 (Suppl.) 216a

    Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluška F, Šamaj J, Volkmann D and Kendrick-Jones J. (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19: 555–569

    Article  PubMed  CAS  Google Scholar 

  • Ryu J-H, Takagi S and Nagai R (1995) Stationary organization of the actin cytoskeleton in Vallisneria: The role of stable microfilaments at the end walls. J Cell Sci 108:1531–1539

    PubMed  CAS  Google Scholar 

  • Ryu J-H, Mizuno K, Takagi S and Nagai R (1997) Extracellular components implicated in the stationary organization of the actin cytoskeleton in mesophyll cells of Vallisneria. Plant Cell Physiol 38: 420–432

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P and Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472

    Article  PubMed  CAS  Google Scholar 

  • Sack F (1997) Plastids and gravitropic sensing. Planta 203: S63-S68

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Peters M, Volkmann D and Baluška F (2000) Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant Cell Physiol, in press

    Google Scholar 

  • Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB and Steel KP (1999) Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214: 331–341

    Article  PubMed  CAS  Google Scholar 

  • Shariff A and Luna EJ (1992) Diacylglycerol-stimulated formation of actin nucleation sites at plasma membrane. Science 256: 245–247

    Article  PubMed  CAS  Google Scholar 

  • Sievers A, Buchen B, Volkmann D and Hejnowicz Z (1991) Role of the cytoskeleton in gravity perception. In: The Cytoskeletal Basis of Plant Growth and Form. Lloyd CW (ed), London: Academic Press, pp 169–182

    Google Scholar 

  • Silk WK (1992) Steady form from changing cells. Int J Plant Sci 153: S49–S58

    Article  Google Scholar 

  • Shimmen T and Yokota E (1994) Physiological and biochemical aspects of cytoplasmic streaming. Int Rev Cytol 155: 97–139

    Article  CAS  Google Scholar 

  • Sivaguru M and Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116: 155–163

    Article  CAS  Google Scholar 

  • Sivaguru M, Baluška F, Volkmann D, Felle H and Horst WJ (1999) Impacts of aluminum on cytoskeleton of maize root apex: Short-term effects on distal part of transition zone. Plant Physiol 119:1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Soldati T, Schwarz EC and Geissler H (1999) Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. Protoplasma 209: 28–37

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51: 257–288

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu S, Miki H and Takenawa T (1999) Distinct roles of profilin in cell morphological changes: Microspikes, membrane ruffles, stress fibers, and cytokinesis. FEBS Lett 457: 470–474

    Article  PubMed  CAS  Google Scholar 

  • Titus MA (1993) Myosins. Curr Opin Cell Biol 5: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchex D and Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 357: 676–677

    Article  Google Scholar 

  • Verbelen J-P and Tao W (1998) Mobile arrays of vacuole ripples are common in plant cells. Plant Cell Rep 17: 917–920

    Article  CAS  Google Scholar 

  • Vermeer J and McCully ME (1982) The rhizosphere in Zea: New insight into its structure and development. Planta 156: 45–61

    Article  Google Scholar 

  • Vidali L, Yokota E, Cheung AY, Shimmen T and Hepler PK (1999) The 135 kDa actin-bundling protein from Lilium longiflorum pollen is the plant homologue of villin. Protoplasma 209: 283–291

    Article  CAS  Google Scholar 

  • Vitha S, Baluška F, Mews M and Volkmann D (1997) Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues. J Histochem Cytochem 45: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Baluška F, Braun M, Šamaj J, Volkmann D and Barlow PW (2000) Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: Aldehydes do not destroy F-actin. Histochem J, in press

    Google Scholar 

  • Volkmann D and Baluška F (1999) The actin cytoskeleton in plants: From transport networks to signaling networks. Microsc Res Tech 47: 135–154

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluška F, Lichtscheidl IK, Driss-Ecole D and Perbal G (1999) Statoliths motions in gravity-perceiving plant cells: Does actomyosin counteract gravity? FASEB J 13 (Suppl.): S143–S147

    PubMed  CAS  Google Scholar 

  • Watson AJM, Levine S, Donowitz M and Montrose MH (1992) Serum regulates Na+/H+ exchange in Caco-2 cells by a mechanism which is dependent on F-actin. J Biol Chem 267: 956–962

    PubMed  CAS  Google Scholar 

  • Wolfe J and Steponkus PL (1993) Mechanical properties of the plasma membrane of isolated plant protoplasts. Plant Physiol 71: 276–285

    Article  Google Scholar 

  • Wu X, Jung G and Hammer JA III (2000) Functions of unconventional myosins. Curr Opin Cell Biol 12: 42–51

    Article  PubMed  CAS  Google Scholar 

  • Yokota E and Shimmen T (1999) The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209: 264–266

    Article  PubMed  CAS  Google Scholar 

  • Yuan A and Chia CP (1999) Co-loss of profilin I, II and cofilin with actin from maturing phagosomes in Dictyostelium discoideum. Protoplasma 209: 214–225

    Article  Google Scholar 

  • Zot HG, Doberstein SK and Pollard TD (1992) Myosin-I moves actin filaments on a phospholipid substrate: Implications for membrane targeting. J Cell Biol 116:367–376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. J. Staiger F. Baluška D. Volkmann P. W. Barlow

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baluška, F., Barlow, P.W., Volkmann, D. (2000). Actin and Myosin VIII in Developing Root Apex Cells. In: Staiger, C.J., Baluška, F., Volkmann, D., Barlow, P.W. (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9460-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9460-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5504-0

  • Online ISBN: 978-94-015-9460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics